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Abstract

Background:  The efficacy and safety of 6-mercaptopurine (6-MP) therapy rely on the 
concentration of its metabolites. The aim of the current study is the pharmacokinetic analysis of 6-MP 
and the detection of its metabolites as well as the role of Thiopurine S-methyl transferase (TPMT), the 
enzyme associated with 6-MP metabolism, as a pharmacogenomics biomarker.

Materials and Methods: Data were collected from 19 patients with different types of leukemia 
and lymphoma who received 6-MP chemotherapy. Pharmacokinetic analysis was performed using an 
HPLC. The VNTR promoter polymorphisms of TPMT were detected.

Results and Conclusion: The pharmacokinetic analysis confirmed the heterogeneity of the 6-MP 
metabolism. The TPMT genotyping revealed a correlation between the TPMT*3C variant and increased 
levels of 6-thioguanine nucleotides (TGs). No methylation pattern was obtained.

(6-TIDP) and triphosphate (6-TITP) to form 6-TIMP once again 
by the action of the enzyme inosinetriphosphatase (ITPA) [4]. TGs 
incorporate into DNA causing further DNA damage by single-strand 
breaking, inter-strand crosslinking and DNA-protein crosslinking 
[5]. Despite this knowledge, the pharmacokinetic profile of 6-MP 
remains partial understood. A better understanding of the disposition 
of 6-TGs and 6-MMPs would be of extreme value towards an 
improved design of 6-MP dose regimens, diminishing drug toxicity 
[2]. In this context, the application of pharmacogenetics that relies on 
studying sequence variations in candidate genes that probably affect 
drug response could serve for patient monitoring and stratification 
[6].

In this study, the pharmacokinetic profile of 6-MP was investigated 
in patients with different types of leukemia and lymphoma under 
6-MP maintenance chemotherapy. Also, the TPMT polymorphisms 
and gene methylation were examined, both retrospectively and 
prospectively. Understanding the metabolism of 6-MP along with 
the detection of TPMT variants in patients with different types of 
leukemia and lymphoma will contribute to the improvement of the 
6-MP therapeutic regimen eliminating the associated toxicity.

Materials and Methods
Patients

 Nineteen patients with different types of leukemia and lymphoma 
(Table 1) upon 6-MP treatment were enrolled for this study. The 
majority of patients (18) were hospitalized at the University Hospital 
of Patras, Greece and 1 patient was hospitalized at the University 
Hospital of Ioannina, Greece. Samples were collected according to 
the ethics rules and upon patients’ approval. Eleven subjects have 
completed their therapy before this study and 8 subjects were on 
treatment. Peripheral blood samples (1.5 ml) were collected in 
ethylene-diaminetetraaceticacid (EDTA) tubes at the appropriate 
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Introduction
Thiopurine S-methyl transferase (TPMT) is an enzyme which 

affects the metabolism of 6-mercaptopurine (6-MP). Patients with 
lack or low levels of TPMT will not receive the appropriate therapy 
if a normal dose of 6-MP is used [1]. 6-MP, mainly used in treating 
acute lymphoblastic leukemia (ALL), is inactive and it requires 
metabolic activation to exert its cytotoxic effect. After 6-MP’s 
administration, three enzymes are of significant importance for 
its metabolism; xanthine oxidase (XO), TPMT and hypoxanthine 
phosphoribosyltransferase (HPRT) [2]. XO metabolises 6-MP to 
6-thiouric acid (6-TU) and TPMT methylates 6-MP to 6-mMP. 
HPRT catalyzes the production of 6-thioinosine monophosphate 
(6-TIMP) and subsequently, the active 6-thioguanine nucleotides 
(6-TGs). 6-TIMP can alternatively be methylated by TPMT, yielding 
6-methylmercaptopurine nucleotides (6-mMPNs) [3]. Finally, 
6-TIMP is converted successively into 6-thioinosine diphosphate 
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time point’s pre and post (1h, 1.3h, 1.45h, 5h, 8h, and 24h) 6-MP 
administration and centrifuged at 1000 g for 10 min to separate 
plasma from red blood cells (RBCs). The RBCs were washed twice 
with a Hank’s balanced salt solution (HBBS) and then suspended at 
a density of 8x108 RBCs per 200ml and kept frozen at -20°C until 
required for further processing. An extra peripheral blood sample (1 
ml) from all patients was collected in an EDTA tube and keptat-20°C 
without centrifugation for TPMT genotyping.

Reagents and chemicals
HPLC-grade acetonitrile (CΗ3CΝ) and methanol (CΗ3ΟΗ) 

(Honeywell Burdick & Jackson, Seelze, Germany), mono-potassium 
phosphate (KH2PO4), phosphoric acid (H3PO4) and potassium 
hydroxide (KOH) (Merck KgaA, Darmstadt, Germany) and ultra-
pure water from a MilliQ® instrument (Millipore, Billerica-USA) 
were used.

Bench-top stability and freeze and thaw studies of 
6-MP, TG and 6-MMP

The bench-top stability of the analytes of interest (6-MP and 
its major metabolites) in human RBCs was evaluated at room 
temperature. Two concentrations per analyte were tested (low and 
high) at t=1h and t=24h. A freeze and thaw experiment was also 
performed for the evaluation of the analytes’ stability in RBCs at the 
same concentrations.

Preparation of standards and calibration curve for 
the detection of 6-MP and its metabolites

Stock solutions of 6-MP (1.6 mg/ml), 6-TG (1 mg/ml) and 
6-MMP (2.5 mg/ml) were prepared in 0.1 NaOH. Two sets of 
standard solutions were then prepared for the analysis in the RBCs of 

patients. The standard solutions prepared were in the concentration 
range of 8.5-170 ng/ml, 0.025-1.25 μg/ml and 0.20-20 μg/ml for 6-MP, 
6-TG and 6-MMP, respectively. Concentrations were chosen as such 
in order to exhibit clinical relevance. A different set of solutions at 
three different concentrations (low, medium and high) were prepared 
depending on the analyte tested, serving as quality control (QC) 
samples. Calibration curves and QC samples were prepared daily in 
RBCs.

HPLC analysis
HPLC was performed with an Ultimate 3000 Pump system 

(Dionex Corporation, Sunnyvale, CA, USA), sharing an infusion 
valve 8125 (Rheodyne, Rohnert Park, CA, USA) with a 20 μL loop and 
an Ultimate 3000 Photodiode Array Detector (Diode Array Detector, 
DAD). The Chromeleonv.6.80 software was employed for the sample 
and data analysis. Resolution was achieved using a reverse phase 
analytical column, C18 (250 × 4.6 mm, i.d. 5 μm, Xterra) at a flow rate 
of 0, 9 mL/min. The mobile phase consisted of solvents A: KH2PO4 
(pΗ=2.25) 0.02Μ, B: acetonitrile (HPLC grade), and C: methanol 
(HPLC grade). A 16 min-isocratic run was developed (A:B:C, 96:3:1). 
Typical injection volume was 20 μl. A stable temperature of 25oC 
was used towards peak shape optimization. Three absorption UV-V 
is wavelengths were selected, being specific and optimum for each 
analyte; 322 nm (6-MP), 303 nm (6-MMP) and 342 nm (TG).

For the construction of calibration curves with spiked samples the 
method of constant addition was used. The calibration curves of peak 
areas (in mAU x min-the peak areas of blank samples were subtracted 
from those of the spiked samples) versus concentration (ng/mL) 
were linear in the concentration range studied. Blank samples were 
analyzed with each calibration curve. Then a random sample of RBCs 

Table 1: The demographic data of the patients treated with 6-MP that were included in the current study.

No Sex Age Time of diagnosis (years) Disease Therapy status Methotrexate

1 F 63 60 BLL On therapy -

2 M 21 17 BL On therapy -

3 F 33 28 ALL Completed therapy -

4 M 31 27 BL On therapy -

5 F 18 14 BLL Completed therapy -

6 F 53 48 BLL Completed therapy -

7 M 83 78 AML Completed therapy -

8 F 50 45 ML Completed therapy -

9 M 45 42 AML Completed therapy -

10 F 46 37 BLL Completed therapy -

11 M 26 13 LL Completed therapy -

12 M 26 16 ALL Completed therapy -

13 F 55 54 LL On therapy 40mg/m2

14 M 20 14 ALL Completed therapy -

15 F 77 76 AML Completed therapy -

16 F 65 56 AML Myelodisplastic On therapy 40mg/m2

17 M 63 63 ALL On therapy 40mg/m2

18 M 20 19 AL On therapy 40mg/m2

19 F 76 75 AMLΜ3 On therapy 40mg/m2
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was analyze during HPLC (data not shown). In order to verify the 
detection capacity of the method, standard concentrations of 6-MP, 
6-TG and 6-MMP were added into a healthy volunteer’s RBCs, as 
described in “Materials and Methods” section. An HPLC analysis 
was performed and an indicate chromatograph is demonstrated in 
Figure 1A. The performance of analysis for the standard solutions was 
followed by the analysis of samples from patients treated with 6-MP.

Detection of VNTR promoter polymorphisms and 
methylation pattern in the TPMT gene

All subjects were genotyped in the TPMT gene promoter VNTR 
and coding regions, as described previously [7]. Genomic DNA was 
isolated from blood specimens using QIAamp® DNA Blood Mini 
Kit (Qiagen GmbH, Hilden, Germany). The number and type of 
tandem repeats were determined by PCR amplification followed by 
direct re-sequencing, as previously described [7], using the Big Dye® 
Terminator Version 3.1 Ready Reaction Kit (Applied Biosystems, CA, 
USA) and by capillary electrophoresis using an automatic sequencer 
(3130 Genetic Analyzer, Applied Biosystems) according to the 
manufacturer’s instructions. The sequences of the primers employed 
were; TPMT_VNTR_F: AGGACTAGGGATGGGTAGGG and 
TPMT_VNTR_R: ACCTCGCTTACAGCTGGTTG. To investigate 
TPMT methylation, we focused on V4/V7, V5/V5, V5/V7, V6/V6 
and V6/V8. A pyrosequencing-based methylation assay was used, 
according to the Pyromark Q24 software quick start guide and 
Pyromark Q24 Vacccum workstation quick start guide. Ten samples 
were analyzed.

Results
HPLC analysis of patients’ samples undergoing 
therapy, to detect 6-MP and its metabolites

The patients that were on treatment with 6-MP during this study 
and the patients that have completed their treatment are shown 
in Table 1. Samples were collected at the indicated time points as 
described in the “Material and Methods” section. The sample of patient 
4 was subjected to haemolysis and therefore, further analysis wasnot 
performed. Table 2 shows the 6-MP levels in the RBCs’ of patients (13, 
16, 17, 18 and 19) prior and post their standard treatment at various 
time points. In all cases, except patient 18, the inactive form of 6-MP 
was not detected prior drug administration. In patients 13 and 16, the 
levels of inactive 6-MP were decreased in a time dependent manner, 
as expected. Patients 17 and 19 exhibited a similar pharmacokinetic 
profile as 6-MP was detected only 1h after drug administration 
and its levels decreased gradually with time resulting in no 6-MP 
detection. The major metabolites of 6-MP, namely 6-TG and 6-MMP 
were also analyzed (Table 2). In patients 13 and 16, the levels of both 
metabolites increased in a time dependent manner, as expected. 
Interestingly, only 6-MMP was detected in patient 17 within 1h after 
6-MP treatment. On the contrary, in patients 18 and 19, only 6-TG 
was detected prior and 1h post treatment. At this point, it should be 
noted that patients 17, 18 and 19 demonstrated a very steep drug 
elimination profile. Representative chromatographs for 6-MP, 6-TG 
and 6-MMP of patient 13 are depicted in Figure 1B.

Analysis of the TPMT gene promoter VNTR 
polymorphism and gene methylation

The patients enrolled in this study were either upon 6-MP 
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Figure 1: An HPLC analysis of A) an indicative chromatograph of a 6-MP, 6-TG, 6-MMP mixture in the RBCs of a healthy volunteer. The analysis was conducted 
at 342 nm, the optimum wavelength for the 6-TG. B) A representative chromatograph of sample No 13, 1.45h post 6-MP treatment, the peaks indicate the levels of 
6-MP, 6-TG and 6-MMP. 6-MP: 6-mercaptopurine, 6-TG: 6-thioguanine, 6-MMP: 6-methyl-mercaptopurine.
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treatment or treatment completion. The genotyping of the VNTR 
promoter of the TPMT gene was conducted on samples of all patients 
enrolled. The results of the VNTR analysis are summarized in Table 3. 
Αll patients were found to be wild-type (wt), except patient 18 where 
the TPMT*3C polymorphism was detected. No methylation was 
obtained (data not shown).

Discussion
The efficacy and safety of 6-MP therapy rely on the concentration 

of the cytotoxic TGs metabolites, which in turn depends on the 
metabolism of 6-MP by TPMT [8,9]. Herein, the pharmacokinetic 
analysis of 6-MP confirms the heterogeneity that accompanies the 
metabolism of this drug. In particular, 6-MP as well as its major 
metabolites (6-TG and 6-MMP) were detected in patients 13 και 16, 
while only 6-MP and 6-TG were detected in patients 18 and 19 and 
6-MMP was only detected inpatient 17. 6-MP detection at several 
time points after drug administration- especially in the case of patient 
13 – should be noted. The slow rate of drug elimination might be 
correlated with methotrexate that was also included in patient 
treatment along with 6-MP. Methotrexate is a potent inhibitor of 
dihydrofolatereductase (DHFR), a key enzyme for intracellular 
folate metabolism, and functions to regenerate tetrahydrofolate from 

dihydrofolate, a product of thymidylatesynthase.As a consequence of 
DHFR inhibition, intracellular levels of tetrahydrofolate coenzymes 
are decreased, resulting in the inhibition of thymidylate and 
consequently DNA biosynthesis, as well as purine biosynthesis [10]. 
Previous in vitro and in vivo studies have shown that the simultaneous 
treatment with 6-MP and methotrexate affects 6-MP metabolism. 
De novo inhibition of purine biosynthesis by methotrexate causes 
increased intracellular levels of phosphoribosyl pyrophosphate which 
is a cofactor of HPRT enzyme in 6-MP metabolism [11-13]. It has 
been found that the combination of 6-MP with methotrexate leads 
in a synergistic conversion of 6-MP to 6-TG. Furthermore, XO is 
inhibited and the levels of 6-MP increased in plasma. In addition, data 
showed that increased accumulation of polyglutamate derivatives of 
methotrexate in red blood cells is correlated with increased 6-TG 
levels during all maintenance therapy using low dose methotrexate (40 
mg/m2) and daily treatment with 6-MP (75 mg/m2). However, when 
high dose of methotrexate (1g/m2) are used, 6-TG accumulation is 
disrupted after treatment with 6-MP (1g/m2) during induction phase 
[11,14]. Indeed, patients 13, 16, 17, 18 and 19 participated in the 
current study were also treated with methotrexate (Table 1) and this 
might contributed to 6-MP metabolites’ accumulation in red blood 
cells resulting in increased toxicity. 

Table 2: The demographic data of the patients treated with 6-MP that were included in the current study.

6-MP (ng/ml) levels

No prior to treatment 1h 1,3h 1,45h 5h 8h 24h

1 ND ND ND ND ND - ND

2 ND ND ND ND ND ND -

13 - 229,12 ND 99,68 ND ND ND

16 - 203,24 120,61 ND 89,59 ND ND

17 - - ND ND ND ND ND

18 13,07 80,90 ND ND ND ND ND

19 - 50,55 ND ND ND ND ND

6-TG (ng/ml) levels

1 ND ND ND ND ND - ND

2 ND ND ND ND ND ND -

13 - 153,83 ND 347,30 ND ND ND

16 - 219,52 318,80 ND 440,67 ND ND

17 - - ND ND ND ND ND

18 30,75 380,25 ND ND ND ND ND

19 87,09 260,098 ND ND ND ND ND

6-MMP (ng/ml) levels

1 ND ND ND ND ND - ND

2 ND ND ND ND ND ND -

13 212,06 1195,78 ND 3124,44 ND ND ND

16 - 1137,78 32160,72 ND 3360,00 ND ND

17 - 2012,67 ND ND ND ND ND

18 - - ND ND ND ND ND

19 - - ND ND ND ND ND
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Herein, the highest levels of 6-TG were only observed in patient 
18. This might be correlated with the polymorphism TPMT*3C (A/G 
heterozygous) that was revealed after the analysis of the TPMT gene 
promoter. The TPMT gene promoter VNTR polymorphisms are 
known to affect the activity of the enzyme. A recent study also shows 
that the number and the type of the repeats affect gene transcription 
levels [7]. Interestingly, no gene methylation was observed.

Besides the genetic factors that affect TPMT activity, nongenetic 
factors might be implicated, too. In fact, nationality seems to be an 
important factor [15,16]. TPMT is an enzyme with great interest 
because of its implication in drug metabolism. Many studies show 
a worldwide attempt for mapping the TPMT polymorphisms [17-
25] that affect its activation and hence, determine drug dosage in 
the clinic. Previous data demonstrated that the frequency of TPMT 
polymorphisms is 1 to 300 cases or 1 to 200 cases [26]. These 
studies refer to Caucasians and non-Caucasians or describe nations. 
Furthermore, there is a detailed study in South India that considers 
people migration from other countries [19]. Genetic analyses show 
that the frequency of TPMT polymorphisms is higher in Caucasians 
compared to North Asians. Also, their frequency is similar between 
black and white Americans [26]. Differences in TPMT variants across 
different populations are increasingly being recognized and a more 
detailed TPMT screen should be conducted to better define the clinical 
implications of TPMT heterogeneity with respect to thiopurine 
treatment. However, the genotyping of TPMT is not adequate for 
determining the activity of TPMT. In the UK, there were some cases 
of low TPMT activity that were detected independently of TPMT 

Table 3: The analysis of VNTR promoter in patients enrolled in this study.

No VNTR promoter 2 3A 3B *3C 4 7 8 20 25

1 *6a/*7a (A2B3C/A5BC) wt wt wt wt wt wt wt wt wt

2 *4a/*5a (A2BC/A2B2C) wt wt wt wt wt wt wt wt wt

3 *4a/*5a (A2BC/A2B2C wt wt wt wt wt wt wt wt wt

4 *4a/*5a (A2BC/A2B2C) wt wt wt wt wt wt wt wt wt

5 *4a/*4a (A2BC/A2BC) wt wt wt wt wt wt wt wt wt

6 *4a/*4a (A2BC/A2BC) wt wt wt wt wt wt wt wt wt

7 *4a/*5a (A2BC/A2B2C) wt wt wt wt wt wt wt wt wt

8 *6a/*6a (A2B3C/A2B3C) wt wt wt wt wt wt wt wt wt

9 *4a/*5a (A2BC/A2B2C) wt wt wt wt wt wt wt wt wt

10 *5a/*6a (A2B2C/A2B3C) wt wt wt wt wt wt wt wt wt

11 *4a/*4a (A2BC/A2BC) wt wt wt wt wt wt wt wt wt

12 *4a/*4a (A2BC/A2BC) wt wt wt wt wt wt wt wt wt

13 *4a/*4a (A2BC/A2BC) wt wt wt wt wt wt wt wt wt

14 *5a/*5a (A2B2C/A2B2C) wt wt wt wt wt wt wt wt wt

15 NA - - - - - - - - -

16 NA - - - - - - - - -

17 *5a/*6a (A2B2C/A2B3C) wt wt wt wt wt wt wt wt wt

18 *4b/*5a (AB2C/A2B2C) wt wt wt A/G wt wt wt wt wt

19 *4a/*5a (A2BC/A2B2C) wt wt wt wt wt wt wt wt wt

genotyping [27]. Besides the frequency of TPMT polymorphisms, 
the type of the polymorphism is important, too. TPMT*3A και 
*3C are detected in Caucasians [28] at a percentage of 95%, while 
type *2 is less frequent. The same pattern is observed in European 
people, with the exception of TPMT*3Β that is also detected, yet 
less frequently in Swedish people [30]. In Italy, the most frequent 
variant is the TPMT*3A, although the TPMT*3Β and *3C variants 
are equally detected [29]. This difference might be correlated with 
the influence of other populations like Sardinians [30] that have been 
affected by several invaders in their history. Greece is another typical 
example that has been influenced by many invaders in its history. In 
the current project, noteworthy, the only polymorphism that was 
detected was TPMT*3C, although the number of patients was small 
and more samples should be analyzed for a robust outcome.

We believe that the understanding of the pharmacokinetic profile 
of 6-MP along with the detection of the TPMT gene promoter VNTR 
polymorphisms in patients with different types of leukemia and 
lymphoma will result in an improved therapeutic strategy and patient 
stratification.

Statement of human rights/ Informed consent
The studies have been approved by the appropriate institutional 

research ethics committee and have been performed in accordance 
with the ethical standards as laid down in the 1964 Declaration of 
Helsinki and its later amendments or comparable ethical standards. 
Informed consent was obtained from all individual participants 
included in the study.
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