Abbreviations

ATR: Allergic Transfusion Reaction; CT: Computed Tomography; FFP: Fresh Frozen Plasma; HCC: Hepatocellular Carcinoma; Ig: Immunoglobulin; IVIG: Intravenous Gamma Globulin; LDLT: Living Donor Liver Transplantation; RFA: Radiofrequency Ablation; TACE: Transarterial Chemoembolization;

Introduction

Allergic transfusion reactions (ATR) are common complications after blood transfusion, and occur in up to 10.2% of patients who receive blood products via transfusion [1,2]. The clinical symptoms range from fever, hives, and edema to dyspnea, tachycardia, and hypotension. However, anaphylaxis and severe ATRs are rare complications. Anaphylaxis is more common after the transfusion of plasma-containing products, with an incidence of 1 per 10,000–33,000 units of platelets or 1 per 29,000–50,000 units of fresh frozen plasma (FFP) as compared with 1 in 50,000–200,000 units of red blood cells transfused [1-3]. Although transfusion-related anaphylaxis is rare, it is associated with severe clinical outcomes, including death [4].

Liver transplantation is one of the most effective treatments for patients with end-stage liver diseases, such as hepatitis B- or C-induced liver cirrhosis or hepatocellular carcinoma (HCC). However, owing to the scarcity of cadaveric donors relative to the number of patients waiting for liver transplantation, living donors have gained traction as an alternative. In recent decades, surgeons have focused on ABO-incompatible liver transplantations, and the outcomes of this procedure have improved significantly with accumulating knowledge of balanced immunosuppression protocols [5].

Many candidates for liver transplantation have portal vein hypertension, splenomegaly, and thrombocytopenia. They also have a prolonged prothrombin time caused by deficient production of coagulation factors. Accordingly, these patients have much a higher risk of bleeding during their illness and blood transfusion is frequently required in their resuscitation. Furthermore, liver transplantation is a complicated procedure that is expected to cause significant blood loss [6], even when the surgeon uses many approaches and techniques to minimize this loss. Therefore, transfusion of multiple units of blood products is necessary during liver transplantation.

Here, we report a patient with hepatitis B virus-induced liver cirrhosis and HCC who experienced platelet transfusion-related anaphylaxis after successful ABO-incompatible living donor liver transplantation (LDLT).

Case Presentation

A 64-year-old male with hepatitis B-induced liver cirrhosis and HCC presented at an emergency room in April, 2013 with abdominal pain and melena. He was previously diagnosed with esophageal varix Grade II [7], caused by liver cirrhosis and a duodenal bulb ulcer. His white blood cell count, hemoglobin concentration, and platelet count were 3.39 × 10^9/μL, 14.6 g/dL, and 33 × 10^9/μL, respectively.

He was transfused with 6 units of platelets, which resulted in an acute hypotensive response (blood pressure 77/53 mmHg) and hypoxia (oxygen saturation 80%). He was treated with intravenous epi nephrine (1 mg), chlorpheniramine (4 mg), fluid resuscitation, and supplemental oxygen. Department of allergy medicine was contacted and the patient’s serum immunoglobulin concentrations were checked as follows: IgG, 1350 mg/dL (normal range 700–1700 mg/dL); IgA, 179 mg/dL (normal range 90–400 mg/dL); IgM, 122 mg/dL (normal range 45–230 mg/dL); IgE, 144.7 mg/dL (normal range 0–100 mg/dL). Owing to suspected platelet transfusion-related anaphylaxis, it was recommended that the patient should undergo slower transfusion and apheresis platelets need to be used if necessary.
transfusion was required again. His vital signs stabilized within 6 h of starting resuscitation. The next day, his condition had improved and he was discharged from the Emergency Room.

In September 2014, the patient was admitted for radiofrequency ablation (RFA) and trans-arterial chemoembolization (TACE) to treat newly developed HCC lesions in segments 6 and 8 of the liver. His serum platelet level was 23 × 10^3/µL at admission. Because of the high risk of bleeding during RFA and TACE, he underwent apheresis platelet transfusion. One hour after transfusion, he became febrile (38.5 °C) and started shivering after the second transfusion. Therefore, he was managed with antipyretics and pathologic findings, we think that the most likely etiology of our patient’s transfusion reaction was an anaphylactic reaction, even though his serum Ig concentrations were in normal ranges except for a mild elevation of IgE.

The patient also received IVIG perioperatively in accordance with the protocol for ABO-incompatible LDLT. IVIG has potent immunomodulatory effects and is beneficial in the treatment of various autoimmune and inflammatory disorders [14]. The proposed mechanisms of action of IVIG on humoral reactions include promotion of B cell or plasma cell apoptosis through the Fc-receptor dependent pathway, and inhibition of alloreactive T cell-mediated or complement-mediated allograft injury, although these possibilities have not yet been confirmed [15]. Additionally, IVIG might prevent further anaphylactic reactions after postoperative platelet transfusions, even though the mechanism by which it prevents these anaphylactic reactions is unknown [16,17].

Because the patient had experienced an anaphylactic episode after platelet transfusion, he was to be given washed apheresis platelets to prevent subsequent ATRs, whenever transfusion was required, because this was reported to be effective in previous studies [12,13].

The patient also received IVIG perioperatively in accordance with the protocol for ABO-incompatible LDLT. IVIG has potent immunomodulatory effects and is beneficial in the treatment of various autoimmune and inflammatory disorders [14]. The proposed mechanisms of action of IVIG on humoral reactions include promotion of B cell or plasma cell apoptosis through the Fc-receptor dependent pathway, and inhibition of alloreactive T cell-mediated or complement-mediated allograft injury, although these possibilities have not yet been confirmed [15]. Additionally, IVIG might prevent further anaphylactic reactions after postoperative platelet transfusions, even though the mechanism by which it prevents these anaphylactic reactions is unknown [16,17].

Splenectomy is an integral part of the protocol for ABO-incompatible LDLT at many institutions because the spleen is the site of B cell maturation and antibody production [18,19].
However, splenectomy is associated with many procedure-related complications including portal vein thrombosis, pancreatic fistula, and sepsis [20,21]. Rituximab is a monoclonal chimeric human-murine anti-CD20 antibody that destroys B cells by promoting complement-dependent cellular cytotoxicity. It removes CD20-positive B cells from the circulation and the lymphoid tissues of the spleen. Therefore, rituximab acts as a form of chemical splenectomy [22]. Studies have shown that preoperative administration of rituximab may replace splenectomy [19,23,24]. Considering this benefit of rituximab in terms of spleen preservation, embolization of a splenic artery aneurysm was performed to preserve the spleen before transplantation. During surgery, however, it was confirmed that the splenic artery was incompletely embolized, permitting blood flow into the splenic artery. This raised some concern of a risk of bleeding from the incompletely embolized splenic artery aneurysm. After evaluating the risks and benefits, splenectomy was performed. Follow-up laboratory tests showed that because his serum platelet count had increased to a sufficient level, platelet transfusion was not required in the immediate postoperative period.

Conclusion

It is challenging to perform LDLT, which carries a high risk of bleeding, in patients with a history of platelet transfusion-related anaphylaxis. In this patient, the use of IVIG, steroids, apheresis platelet transfusion, rituximab, and splenectomy avoided anaphylaxis during ABO-incompatible LDLT.

Authorship Contribution

Dr. Chang wrote and edited the case report. Dr. Han reviewed and edited the case report. Dr. Cho, Dr. Yoon, and Dr. Choi were involved in the surgical procedures, the patient’s care plan, and reviewed the case reported. Dr. Lee contributed to data collection.

Consent

The patient gave consent for publishing this manuscript. All efforts were given to keep maintain the patient’s anonytum.

References


Copyright: © 2016 Chang WB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.