Arterial hypertension is defined by a stable increase in systemic arterial blood pressure (BP) values, i.e. systolic value of 140 mmHg or more and/or diastolic one of 90 mmHg or more. Its prevalence is about 30–45% of the general population; representing a well-known cardiovascular (CV) risk factor [1]. In addition to BP values, the assessment of target organ damage has a pivotal role in stratification of total CV risk of patients. Current guidelines for the management of arterial hypertension suggest several tools for evaluating hypertension-related asymptomatic organ damage, such as electrocardiography, echocardiography, vascular ultrasound examination (carotid wall thickening or plaque, carotid-femoral pulse wave velocity, ankle-brachial index), and estimated glomerular filtration rate and microalbuminuria for study of renal function. However, these techniques are able to detect a already established structural lesion, while, on the other hand, the evaluation of early phases of atherosclerosis is crucial in primary CV prevention. Endothelial dysfunction represents the earliest stage of atherosclerosis, occurring before the evidence of morphological vascular alterations at Doppler ultrasonography and angiography [2]. Its impairment is able to significantly predict CV events independently of traditional risk factors [3], as well as the recovery of endothelial function predicts the increase in CV event-free survival [4].

Flow-mediated vasodilation (FMD) is a non-invasive methods able to assess endothelial dysfunction. This technique measures the percentage increase in diameter of a conduit artery, i.e. brachial artery, respect to the baseline after the application of a pressure stimulus [5].

At this purpose, well known is the relationship between endothelial function and arterial hypertension, this latter an established risk factor for atherosclerosis.

Several evidences show, in fact, an impaired vasodilator response to acetylcholine and bradykinin, endothelium-dependent vasodilators, in patients with essential hypertension due to a generalized endothelial damage rather than to a reduced bioavailability of a specific intracellular mediator of vasorelaxation [6]. Besides, endothelial dysfunction involves the total systemic arterial bed, as shown by a study performed in hypertensive patients in which abnormal brachial artery FMD was correlated with in vitro maximal response to acetylcholine in subcutaneous small resistance arteries and, on the other hand, FMD was independently related to the impaired small artery vasodilation [7]. Moreover brachial artery FMD correlates with the severity of hypertension: patients with uncontrolled resistant hypertension have, in fact, a greater impairment in endothelial function compared to controlled resistant hypertension ones, and this result is related to non-dipping BP pattern [8]. Furthermore, a study performed in treated hypertensive subjects showed that nocturnal systolic and diastolic BP mainly affected FMD of the brachial artery rather than insulin sensitivity [9].

Lower brachial artery FMD was also related to increased risk of CV events during a 95 months-follow-up in 172 uncomplicated hypertensive patients [10].

Endothelial dysfunction associated to arterial hypertension shows, however, of being a reversible alteration: six months of antihypertensive therapy improve brachial artery FMD in postmenopausal women and reduce CV events during a mean follow-up of 67 months compared to women in which FMD did not change during treatment [11]. Among the antihypertensive drugs nebivolol ameliorates vasodilatory response to acetylcholine [12], while renin–angiotensin system blockers [13] and combination of perindopril/indapamide [14] FMD values in hypertensive subjects.

Inflammation appears to underlie the link between high blood pressure and endothelial dysfunction. In fact, a systemic inflammatory status induces endothelial dysfunction also in non-hypertensive patients [15], and in addition, circulating levels of C-reactive protein, a marker of inflammation, may independently predict the development of arterial hypertension [16]. Furthermore, also oxidative stress, a well-known determinant of endothelial dysfunction, plays a role in pathogenesis of hypertension through a vicious cycle involving inflammation [17].

The severity of endothelial dysfunction is correlated with serum levels of inflammation markers and antioxidant substances also in relatively young subjects affected by essential hypertension [18]. Moreover, in hypertensive patients higher levels of the plasma inflammatory cytokine neopterin are associated with impaired brachial FMD, and, after 3 months of antihypertensive treatment, the decrease in neopterin levels was correlated with the improvement in FMD and the reduction in blood pressure values [19].

As others CV risk factors, hypertension injuries endothelium,
causes its dysfunction and promotes atherosclerotic process [20].
In male subjects elevated systolic BP in adolescence can predict the
reduction of FMD 21 years later independently of other CV risk
factors [21]. These studies suggest that hypertension may cause
endothelial dysfunction, but since both conditions share some
pathogenetic mechanisms, it is interesting to highlight whether
the impaired endothelial function precedes the development of
hypertension or viceversa.

Some evidences support the role of endothelial dysfunction in
promoting the onset of arterial hypertension. In offspring of essential
hypertensive patients a reduced vasorelaxant response to acetylcholine
was found compared with that of offspring of normotensive subjects
[22]. In a cohort of 952 healthy postmenopausal women with normal
BP levels an increase in the risk of developing arterial hypertension,
correlated with the grade of endothelial dysfunction, was
demonstrated, independently of age and baseline pressure values.
In particular, a 16% increase in the relative risk of hypertension for each
unit decrease of FMD was found [23]. However, a study carried out
in 3500 participants from the Multi-Ethnic Study of Atherosclerosis
did not show a role of endothelial dysfunction assessed with FMD
as independent risk factor for hypertension [24]. Although results
are conflicting and this issue remains open, these data suggest that
endothelial dysfunction is a consequence of arterial hypertension
rather than a primary abnormality. Further studies are needed in
order to better understand this relationship.

In the future, the knowledge of exact mechanisms underlying
such a linkage may lead to new insights, i.e. in the drug development,
offering to patients more effective treatments for management of
arterial hypertension. As an early marker of atherosclerosis it is
desirable that the assessment of endothelial function may be widely
used by physicians as screening tool for identify subjects with
asymptomatic and initial arterial damage at higher CV risk. Finally,
future studies aimed to highlight whether the recovery of endothelial
function is associated with better prognosis of hypertensive patients
are warranted.

References
guidelines for the management of arterial hypertension: the Task Force for the
Management of Arterial Hypertension of the European Society of Hypertension
(ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34: 2159-219.
111: 363-368.
(2000) Long-term follow-up of patients with mild coronary artery disease and
endothelial dysfunction in patients with acute coronary syndromes: further
evidence for the existence of the “vulnerable” patient. Circulation 110: 1926-
1932.
Insulin resistance and endothelial function in children and adolescents. Int J
Cardiol 174: 343-347.
Impaired endothelium-dependent vasodilation in patients with essential
hypertension. Evidence that nitric oxide abnormality is not localized to a
function in large and small arteries in human essential hypertension. J
(2011) Non-dipping pattern relates to endothelial dysfunction in patients with
blood pressure but not insulin resistance influences endothelial function in
Prognostic role of flow-mediated dilatation of the brachial artery in
reversible endothelial dysfunction in hypertensive postmenopausal women. J
Am CollCardiol 40: 505-510.
acetylcholine-induced cutaneous vasodilation. ClinPharmacolTher 69: 238-
244.
of combination therapy with angiotensin II receptor blocker and angiotensin-
converting enzyme inhibitor on vascular endothelial function. Hypertens Res
31: 1603-1610.
combination of perindopril and indapamide at low dose improves endothelial
function in essential hypertensive patients after acute administration. Am J
Hypertens 21: 679-684.
(2013) Endothelial function and cardiovascular risk in active inflammatory
C-reactive protein as an independent risk factor for essential hypertension.
2: 582-893.
20. de la Sierra A, Larrousse M (2010) Endothelial dysfunction is associated with
increased levels of biomarkers in essential hypertension. J Hum Hypertens
24: 373-379.
neopterin levels are associated with reduced endothelial function and arterial
elasticity in hypertension. J Hum Hypertens.
Endothelial function and dysfunction. Part II: Association with cardiovascular
risk factors and diseases. A statement by the Working Group on Endothelins
and Endothelial Factors of the European Society of Hypertension. J Hypertens
23: 233-246.
Elevated blood pressure in adolescent boys predicts endothelial dysfunction:
L-arginine-nitric oxide pathway in offspring of essential hypertensive patients.
Circulation 94: 1298-1303.
