Abstract

Malignant transformation of the normal somatic cells into tumorous ones can be assisted by the very difference in their nature agents and factors: penetrating radiation of different nature, numerous chemical substances, some oncogenic and infectious viruses, some toxins, pharmacological agents, some kind of irritation and some non-carcinogenic substance. Probably, the above-numerated agents and factors start up some a common mechanism of the conversion of normal cells into transformed state. As shown, carcinogenic potencies of some fatty acids, carbohydrates, and even distilled water and saline may be explained from the standpoint of karyogamic theory of carcinogenesis. All above-mentioned substances may induce perforations of different volume of plasma membranes of somatic cells. This may premise for cells' fusion process. In result of perforations, total negative charge of plasma membranes decrease, and the somatic cells acquire the capability of contacts with each other, which upon coincidence of the perforated sites of these organoids, may serve as a prerequisite to fusion process.

Introduction

Malignant transformations of normal somatic cells into cancer ones can be assisted by the very difference in their nature agents and factors: penetrating radiation of different nature, numerous chemical carcinogens, some oncogenic and infectious viruses, some pharmacological agents, some kinds of irritations etc. The above-enumerated carcinogens are probably initiating some common mechanism of normal cells converting into the transformed state.

In experimental oncology number of examples are known on induction of malignant neoplasms in laboratory animals after inoculation of, at first sight, indifferent substances, such as some fatty acids, carbohydrates, saline, even distilled water etc. Same results were obtained after epidemiological research of some of these agents, e.g. on respect of dietary fats and carbohydrates.

Explanation of these strange facts by means of already existing different hypotheses and theories of carcinogenesis is impossible. In this article we make attempt to explain the essence of this occurrences by means of karyogamic theory of carcinogenesis [1-4].

Induction of malignant tumors by some fatty acids

The relationship of nutrition and cancer is not a new concern. Hoffman [5], suggested that excessive weight and high caloric intake might be at the root of the increased cancer incidence in the developing world [5]. Recent datum refers to the influence of a restricted diet on the incidence of radiation induced tumors and leukemia in rats and mice [6]. The incidence of developing malignant tumors in rats and mice of either sex, exposed to total body gamma irradiation, was reduced considerably.

During the period of rapid development of civilization, on a relatively short evolutionary scale of time, nourishment of humans underwent deep changes. Physiology of human being of Stone Age is in confrontation with the nourishment of the XX-XXI centuries. After industrialization of the society and growth of its economics; state ratio of dietary fats in human nourishment relatively increased in the form of meat and vegetable oils.
Some aspects of fatty acid’s interrelation with the process of carcinogenesis was in the scope of scientific view for a very long time. Correlation between consumption of dietary fats and development of breast cancer was first observed in the early 20’s of XX century. At the end of the 30’s in scientific literature appeared a new data on carcinogenic properties of several fatty acids after their overheating [7,8]. There are number of experimental data about an origin of malignant tumors in stomach and liver of mice and rats after feeding them overheated dietary fats for a long period of time. Similar results were obtained after feeding mice with cholesterol, turpentine, orange, eucalyptus and croton oils.

These kind of intensive experiments were conducted in recent years; they confirmed etiological role of dietary fats in producing malignant tumors of different histogenesis and localization, in particular, breast, colon and prostate cancers [9–11]. In laboratory animal based experiments it was demonstrated that high content of dietary fats in food (40% of calories), stimulated development of breast cancer, while low content of dietary fats (10% of calories) did not reveal carcinogenic effect. At the same time it was demonstrated that polyunsaturated fatty acids increase process of carcinogenesis more intensively, than saturated fatty acids.

At the same time, some scientists report on fusogenic effect of different (but not all!) fatty acids in in vitro tissue culture [12–14]. In these scientific works numerous fatty acids were studied on their fusogenic properties. These scientists concluded that easiest fusion process occurs with unsaturated fatty acids.

The mechanism inducing malignant neoplasms in human by these substances is so far unknown. Explanation of this mechanism on the basis of such famous modern theories of carcinogenesis, as polyetiologic, virus–genetic, mutation, oncogenes an so on, is impossible. But parallelism between carcinogenicity and fusogenicity of these substances, allow us to consider this phenomenon as confirmation of somatic hybridization theories of carcinogenesis.

On the basis of world literature data and our own theoretical and experimental observations [15,16] we attempt to explain the carcinogenicity of some dietary fats from the standpoint of hybridization theory of carcinogenesis (in particular, from karyogamic or two synkaryons theory).

In our experiments it was established that polyunsaturated (linoleic) and monounsaturated (oleic) fatty acids differ from saturated acids by the high intensity interaction with the cellular membranes. Especially high fusogenic activity has oleic acid. But by means of epidemiological analysis carcinogenic activity of this fatty acid was not established. What is the reason of this strange occurrence? Reverse correlation between fusogenic and carcinogenic abilities was revealed: higher is the fusogenic activity of this or that substance, lower is its’ carcinogenic activity and vice versa. In particular, in case of high fusogenic ability of the substance (for example, oleic acid) formation of giant unviable polykaryocytes was induced and carcinogenic effect was less manifested; and vice versa, carcinogenic effect was higher in the presence of low fusogenic ability of the substance (for example, linoleic acid) because of formation of mainly dikaryons with high oncogenic potency [15,16].

Some dietary fats may induce perforations of definite size of somatic cells in several conditions. This may be premise for cells’ fusion and hetero- and homokaryon formation. Presumably, during the perforation of a cellular membranes, the total negative charge of plasma membranes decreases, and the somatic cells acquire the capability to approach closer (adhesion), which frequently, especially, upon coincidence of the perforated parts, may serve as a prerequisite to fusion process.

Prolonged action of some dietary fats (if they possess promoter abilities too) or full carcinogens and promoters on corresponding tissue (where precancerous cells preexist), induce arising of the first cancerous cell.

Thus, a tumorous cell is a result of fusion of two normal somatic cells after influence of certain carcinogenic (and non- carcinogenic) agents. Dikaryons (hetero- or homokaryons) are formed at the stage of initiation, and then after the reunion of nuclei form mononuclear, tetraploid (or subtetraploid) initiated cells, i.e. precancerous synkaryon. This cell exists in a macro organism for indefinitely long time. At the stage of promotion, after the full carcinogens or promoters influenced corresponding tissues (with preexistence of precancerous cells); intensity of cell’s proliferation is induced. Precancerous cell after some conversions on a molecular and subcellular levels, may be transformed into the cancerous cell. From the chromosomal aberrations, the most dangerous in carcinogenic respect are imbalance translocations.

Possible reason of induction of malignant tumors by some carbohydrates

Population of so-called “developing” countries receive 80% of the calories from cereals, which consists of complex carbohydrates. After the industrialization of countries and development of their economics, the ration of population’s part of fats rise considerably. At the same time consumption of refined sugar (simple carbohydrate) increases too. After such changes in nutrition; among the population occurrence of breast, colon and colorectal cancers rise.

On 1935 and 1938 Nishiyama, who studied carcinogenic properties of several chemical substances in rats, subcutaneously inoculated carbohydrates, in particular, glucose, together with certain substances (orthoaminoazotoluol). These experiments [17,18] demonstrated that at the daily inoculation of 25% glucose solution (1g/kg), after more than 200 days in sites of injection polymorphocellular sarcomas were developed, in five cases out of seven. After increasing glucose concentrations number of malignant tumors were becoming higher and higher.

These experiments were continued by the studies of Takizawa [19]. This scientist subcutaneously inoculated into mice 25% glucose solution daily and day about. Spindle cell
After daily inoculation of 3 ml of distilled water, during 15-17 months fibrosarcomas were observed, which in one case was transplantable. Warabioka, in 13 months after daily injection of distilled water, in 1 rat observed sarcoma, which at lethal stage reached the size of a hen’s egg. Inoculation of 1%, 1,5% or 2% aqueous solution of trypan blue injected subcutaneously in the Wistar or Sprague-Dawley rats (0,5 ml per 150 g body weight, fortnightly) induced production of hepatic sarcomas [30].

Interpretation of these results from the position of different theories and hypotheses of carcinogenesis, turn out to be impossible. For example, it is difficult to express, how distilled water can activate some endogenous viruses or induce expression of definite oncogenes with the following development of malignant neoplasms.

At first sight, it is complicated to explain these events from the position of karyogamic theory too, such as the fusogenic properties of distilled water is yet unknown.

Confirmation of the above-mentioned may be a data of Sokolov [31], in which at research of seminal glands of some insects, in particular, of Omocestus viridilus L., Chorthippus albomarginatus D.C. and Ch. Parallelus Zett., performed injection of distilled water. In result of this manipulation was revealed giant polynuclear cellular structures, formed after the fusion of normal cells and their nuclei. These giant cells, as a rule, are subject to degeneration.

On the other hand it is known, that in some conditions distilled water has the capability to induce destruction of somatic cells, in particular, erythrocytes plasma membranes, what is followed by the intensive hemolysis. This event, i.e. perforation of cells surface, in this particular case may be a cause of cellular membranes fusion process. As known, for isolate leukocyte layer (buffy coat) from the whole blood; used method of so-called “hypotonic shock” [32]. Essence of this method consists in addition of distilled water to the blood with anticoagulant substances, with ratio of 1:1, then shaking it up during 15 seconds. In this period of time intensive hemolysis will destruct absolute majority of erythrocytes and retain leukocytes plasma membranes or form in them perforations of little size (volume).

As was marked above, any fusogenic agents or factors may induce perforations of definite size or modifications of somatic cells plasma membranes with following fusion of these organoids. Perforations of big size induce considerable destroying of cytoplasmic membranes, cytolysis and perishing of the cells.

Proceeding from above-mentioned, we may make an assumption, that daily injection of distilled water into intraperitoneal cavity (or subcutaneously) of experimental animals, in some cases may induce perforations of different sizes of neighboring cells’ plasma membranes, which sometimes assist their approach and following fusion process.

One may imagine, that in sites of inoculation (or near of this site), distilled water may induce in cellular plasma membranes perforations of big size, which from oncological point of view
is not dangerous. And only in tissues localized little far from the site of inoculation create conditions, favorable for cells approach, their fusion, and following somatic hybridization with rising of precancerous cell.

Perishing of considerable quantity of somatic cells in result of plasma membranes destruction directly on site of injection, as known, may be favorable for the process of regeneration of corresponding tissue and intensive proliferation of cells (by production of “growth factor”). This in its turn may involve the process of precancerous synkaryons proliferation too. Precancerous cells after some processes on molecular and subcellular levels may be transformed into tumor synkaryons.

Induction of malignant neoplasms by saline

As it is known, several data of scientific literature testify carcinogenic action of saline (physiological solution) in experimental conditions. In 1940 Japanese scientist Tokoro reported on the development of reticulosarcoma and spindler-cell sarcoma in the site of daily subcutaneous injection of 5-20% saline in two rats [33]. Malignant tumor in first rat developed after 97 injections, and in second rat – after 82 injections. Report of Tokoro so far is an only one (with the exception of data of J. Weisburger, E. Weisburger [34]) and it is impossible to explain these facts by existing theories and hypotheses of carcinogenesis.

Explanation of this phenomenon by the karyogamic theory is also very complex, due to the lack of scientific data on fusogenic properties of this substance. Although, in 1917 Kalashnikov observed polynucleated giant syncytium in the resting phase and during division he acted on spawn of perch by physiologic solution [26]. The main cause of this process, to author’s opinion, is amitosis and fusion of several nuclei.

As was shown in recent years, saline may, in several conditions, modify properties of cytoplasmic membranes’ lipid bilayer. This occurrence may ultimately induce alterations of negative charge of somatic cell’s surface, which may assist to near approach of cells and as a result – their fusion.

Parallelism between carcinogenic and fusogenic properties of physiological solution (although on the basis of single observations) allow us to assume the mechanism of its’ action. Thus, this strange fact we may explain from standpoint of karyogamic theory of carcinogenesis.

Conclusion

Thus, in the experimental oncology there are number of examples on induction of malignant neoplasms in the laboratory animals after the inoculation, at first sight, of indifferent, noncarcinogenic substances, such as dietary fats, carbohydrates, distilled water, physiological solution and so on. It is possible that some dietary fats and carbohydrates too may induce perforations or modifications of somatic cells’ plasma membranes in several conditions. These facts play the definite role in the process of fusion and in arising of the tumor cells. Distilled water and saline has capacity for destroying somatic cell’s plasma membranes. Perforations of these organoids are the reason of cellular membranes’ fusion. Daily injection of distilled water and saline into laboratory animals may induce perforations of plasma membranes of somatic cells, which assist their interaction, following a fusion process.

References

33. Tokoro Y (1940) Über die artificielle erzeugung des sarkoms bei den weissen ratten mittels konzentrierte Kochsalzlösun. Gann 34: 149-155.