The dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure

Abstract

There are reviewed modern investigations devoted to studying nonlinear dispersiveless heavenly type integrable evolutions systems on functional spaces within the modern differential-geometric and algebraic tools. Main accent is done on the loop diffeomorphism group vector fields on the complexified torus and the related Lie-algebraic structures, generating dispersionless heavenly type integrable systems. As examples, we analyzed the Einstein–Weyl metric equation, the modified Einstein–Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, the inverse first Shabat reduction heavenly equation, the first and modified Plebański heavenly equations, the Husain heavenly equation, the general Monge equation and the classical Korteweg-de Vries dispersive dynamical system. We also investigated geometric structures of a class of spatially one-dimensional completely integrable Chaplygin type hydrodynamic systems, which proved to be deeply connected with differential systems on the complexified torus and the related diffeomorphism group orbits on them.

Introduction

Within modern mathematical physics the investigations of completely integrable dynamical systems of nonlinear field models or solvable nonlinear partial differential equations are an active area [1–4], of research since the discovery of the inverse scattering method and application of differential-geometric, algebro-geometric and spectral methods [3–9], to their studying. Such nonlinear field models are in a sense universal since they show up in many areas of physics such as solid state, nonlinear optics, hydrodynamics, plasma physics and other both theoretical and applied research fields. Simultaneously integrable models are linked to many areas of mathematics and characterized by beautiful structures behind them.

In present review we are mainly interested in analyzing geometrical structures, which characterize classical integrable dispersionless dynamical systems, being important for describing both their exact solutions and related mathematical structures, responsible for their properties and diverse applications. We investigate the Lie algebraic structure and integrability properties of a very interesting class of nonlinear dispersionless dynamical systems of the heavenly type, which were initiated by Plebański [10], and later analyzed in a series of articles [11–21]. The work is organized as follows: In Section I we review or at least introduce some basic notions and mathematical constructions, which lie in a background of the Lie differential-geometric approach to studying integrable Lax–Sato type dispersionless differential equations. In Section II we describe the related Lie–algebraic structures and integrable Hamiltonian systems, generated by orbits of co-adjoint actions of loop groups on their cotangent spaces. The Lax–Sato type integrable multi–dimensional heavenly type systems and related conformal structure generating equations are presented in Section III. As it was appeared, amongst them there are present important equations for modern studies in physics, hydrodynamics and, in particular, in Riemannian geometry, being related with such interesting conformal structures on Riemannian metric spaces as Einstein and Einstein–Weyl metrics equations, the first and second Plebański conformal metric equations, Dunajski metric equations etc. What was observed, some of them were generated by seed elements \(l \in \mathfrak{g}^* \), meromorphic at some points of the complex plane \(\mathbb{C} \), whose analysis needed some modification of the theoretical backgrounds. Moreover, the
general differential–geometric structure of seed elements, related with some conformal metric equations, proved to be invariant subject to the spatial dimension of the Riemannian spaces under regard, that made it possible to describe them analytically. We analyzed the Einstein–Weyl metric equation, the modified Einstein–Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, the inverse first Shabat reduction heavenly equation, the first and modified Plebański heavenly equations, the Husain heavenly equation, the general Monge equation. Short Section IV is devoted to constructing superconformal analogs of the Whitham heavenly equation. The algebraic Lax–Sato type vector field representation of the classical Korteweg–de Vries dynamical system is analyzed in Section V. And the last Section VI is devoted to investigation of geometric structures related an one-dimensional completely integrable Chaplygin hydrodynamic system, which proved to be deeply connected with differential systems on the complexified torus and the related diffeomorphisms group orbits on them. This geometric structure made it possible to find an additional relationship between seed differential forms on the torus and describe a new related infinite hierarchy of integrable hydrodynamic systems. These systems, as it was demonstrated in [22], are closely related with a class of completely integrable Monge type equations, whose geometric structure was also recently analyzed in [14], using a different approach, based on the Grassmann manifold embedding properties of general differential systems defined on jet–submanifolds. The latter poses an interesting problem of finding relationships between different geometric approaches to describing completely integrable differential systems.

Vector fields on the complexified torus and the related Lie-algebraic properties

Consider the loop Lie group \(\hat{G} := \text{Diff}(\mathbb{T}_n^1) \), consisting [23], of the set of smooth mappings \([C^1 \rightarrow \mathbb{S}^1 \rightarrow G] = \text{Diff}(\mathbb{T}_n^1)\), extended, respectively, holomorphically from the circle \(\mathbb{S}^1 \subset C^1 \) on the set \(\mathbb{D}^1 \) of the internal points of the circle \(\mathbb{S}^1 \), and on the set \(\mathbb{D}^1 \) of the external points \(\lambda \in \mathbb{C} \setminus \mathbb{D}^1 \). The corresponding diffeomorphisms Lie algebra splitting \(\hat{g} := \hat{g}_c \oplus \hat{g}_\lambda \), where \(\hat{g}_c := \text{Diff}(\mathbb{T}_n^1) \subset \Gamma(\mathbb{T}_n^2;\mathbb{C}) \) is a Lie subalgebra, consisting of vector fields on the complexified torus \(\mathbb{T}_n^2 \approx \mathbb{T}_n \times \mathbb{C} \), suitably holomorphic on the disc \(\mathbb{D}^1 \), \(\hat{g}_\lambda := \text{Diff}(\mathbb{T}_n^1) \subset \Gamma(\mathbb{T}_n^2;\mathbb{C}) \) is a Lie subalgebra, consisting of vector fields on the complexified torus \(\mathbb{T}_n^2 \approx \mathbb{T}_n \times \mathbb{C} \), suitably holomorphic on the set \(\mathbb{D}^1 \). The adjoint space \(\hat{g}^* := \hat{g}_c^* \oplus \hat{g}_\lambda^* \), where the space \(\hat{g}_c^* \subset \Gamma(\mathbb{T}_n^2;\mathbb{C}) \) consists, respectively, from the differential forms on the complexified torus \(\mathbb{T}_n^2 \), suitably holomorphic on the set \(\mathbb{D}^1 \), and the adjoint space \(\hat{g}_\lambda^* \subset \Gamma(\mathbb{T}_n^2;\mathbb{C}) \) consists, respectively, from the differential forms on the complexified torus \(\mathbb{T}_n^2 \), suitably holomorphic on the set \(\mathbb{D}^1 \), so that the space \(\hat{g}_c^* \) is dual to \(\hat{g}_c \) and \(\hat{g}_\lambda^* \) is dual to \(\hat{g}_\lambda \) with respect to the following convolution form on the product \(\hat{g}^* \times \hat{g} \):

\[
(\hat{l} \mid \hat{a}) := \text{res}_{\mathbb{D}^1} \int_{\mathbb{D}^1} \hat{l}_\lambda \cdot \hat{a} \cdot dx
\]

(2.1)

for any vector field \(\hat{a} := \langle \hat{a}(x), \frac{\partial}{\partial x} \rangle \) and differential form \(\hat{l} := \langle \hat{l}(x), dx \rangle \) on \(\mathbb{T}_n^2 \), depending on the coordinate \(x := (j; x) \in \mathbb{T}_n^2 \), where, by definition, \(\langle , \rangle \) is the usual scalar product on the Euclidean space \(\mathbb{R}^{n+1} \) and \(\frac{\partial}{\partial x} := \frac{\partial}{\partial x_1} \wedge \cdots \wedge \frac{\partial}{\partial x_n} \) is the usual gradient vector. The Lie algebra \(\hat{g} \) allows the direct sum splitting \(\hat{g} = \hat{g}_c \oplus \hat{g}_\lambda \), causing with respect to the convolution (2.1) the direct sum splitting \(\hat{g}^* = \hat{g}_c^* \oplus \hat{g}_\lambda^* \). If to define now the set \(\mathbb{I}(\hat{g}^*) \) of Casimir invariant smooth functionals \(h: \hat{g}^* \rightarrow \mathbb{R} \) on the adjoint space \(\hat{g}^* \) via the coadjoint Lie algebra \(\hat{g} \) action

\[
\hat{a}^*_{\mathbb{I}(\hat{g}^*)} \cdot \hat{l} = 0
\]

(2.2)

at a seed element \(\hat{l} \in \hat{g}^* \), by means of the classical Adler–Kostant–Symes scheme [4,11,24,25], one can generate [17,20,26,27], a wide class of multi-dimensional completely integrable dispersionless (heavenly type) commuting to each other Hamiltonian systems

\[
\frac{dl}{dt} := -\hat{a}^*_{\mathbb{I}(\hat{g}^*)} \cdot \hat{l}_h(t)
\]

(2.3)

for all \(h \in \mathbb{I}(\hat{g}^*) \), \(\hat{v}_h(t) := \hat{v}_h(t) \oplus \hat{v}_{h_\lambda}(t) \in \hat{g}_c \oplus \hat{g}_\lambda \), on suitable functional manifolds. Moreover, these commuting to each other flows (2.3) can be equivalently represented as a commuting system of Lax–Sato type [17], vector field equations on the functional space \(\mathbb{C}^2(\mathbb{T}_n^2;\mathbb{C}) \), generating an complete set of first integrals for them.

The Lie-algebraic structures and integrable Hamiltonian systems

Consider the loop Lie algebra \(\hat{g} \), determined above. This Lie algebra has elements representable as

\[
a(x; \lambda) := (a(x; \lambda), \frac{\partial}{\partial x}) := \sum_{j=1}^n a_j(x; \lambda) \frac{\partial}{\partial x_j} + a_0(x; \lambda) \frac{\partial}{\partial x_\lambda} = \hat{g}
\]

for some holomorphic in \(\lambda \in \mathbb{D}_1^* \) vectors \(a(x; \lambda) \in \mathbb{B} \times \mathbb{R} \) for all \(x \in \mathbb{T}_n^1 \), where

\[
\frac{\partial}{\partial x} := \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n} \right) \tag{2.4}
\]

is the generalized Euclidean vector gradient with respect to the vector variable \(x := (i, x) \in \mathbb{T}_n^2 \). As it was mentioned above, the Lie algebra \(\hat{g} \) naturally splits into the direct sum of two subalgebras:

\[
\hat{g} = \hat{g}_c \oplus \hat{g}_\lambda,
\]

(3.1)

allowing to introduce on it the classical \(\mathcal{R} \)-structure:

\[
[a, b]_{\mathcal{R}} := [a, b]_{\mathcal{R}} + [a, b_{\lambda}],
\]

(3.2)

for any \(a, b \in \hat{g} \), where
is a singular as (3.8) (3.13). These expressions (3.14) and (3.11) are calculated with respect to the metric (2.1). Let a seed element be \(\tilde{l} \in \mathfrak{g}^* \) and the natural coadjoint action on the loop co-algebra \(\mathfrak{g}^* \). Then the following dynamical systems

\[
\frac{\partial}{\partial y} \frac{\partial}{\partial t} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L}), \quad \frac{\partial}{\partial t} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L})
\]

(3.12)

and

\[
\frac{\partial}{\partial y} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L}), \quad \frac{\partial}{\partial t} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L})
\]

(3.13)

where \(y, t \in \mathbb{R} \) are the corresponding evolution parameters. Since the invariants \(h(y), h(t) \in \mathfrak{g}(\mathfrak{g}^*) \) commute with respect to the Lie–Poisson bracket (3.6), the flows (3.12) and (3.13) also commute, implying that the corresponding Hamiltonian vector field generators

\[
A_{\mathbf{v}(\mathcal{L})}^y := \left(\mathbf{v}(\mathcal{L})(t), \frac{\partial}{\partial x} \right), \quad A_{\mathbf{v}(\mathcal{L})}^t := \left(\mathbf{v}(\mathcal{L})(t), \frac{\partial}{\partial x} \right)
\]

(3.14)

satisfy the Lax compatibility condition

\[
\frac{\partial}{\partial t} \mathbf{v}(\mathcal{L}) = \left[A_{\mathbf{v}(\mathcal{L})}^t, A_{\mathbf{v}(\mathcal{L})}^y \right]
\]

(3.15)

for all \(y, t \in \mathbb{R} \). On the other hand, the condition (3.15) is equivalent to the compatibility condition of two linear equations

\[
\left[\frac{\partial}{\partial t} + A_{\mathbf{v}(\mathcal{L})}^y \right] \psi = 0, \quad \left[\frac{\partial}{\partial t} + A_{\mathbf{v}(\mathcal{L})}^y \right] \psi = 0
\]

(3.16)

for a function \(\psi \in C^2(\mathbb{R}^2 \times \mathbb{R}^n, \mathbb{C}) \) for all \(y, t \in \mathbb{R} \) and any \(\lambda \in \mathbb{C} \). The above can be formulated as the following key result:

Proposition 3.1: Let a seed element be \(\tilde{l} \in \mathfrak{g}^* \) and \(h(y), h(t) \in \mathfrak{g}(\mathfrak{g}^*) \) be Casimir functions subject to the metric (1.1) on the loop Lie algebra \(\mathfrak{g} \) and the natural coadjoint action on the loop co-algebra \(\mathfrak{g}^* \). Then the following dynamical systems

\[
\frac{\partial}{\partial y} \frac{\partial}{\partial t} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L}), \quad \frac{\partial}{\partial t} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L})
\]

(3.17)

are commuting Hamiltonian flows for all \(y, t \in \mathbb{R} \). Moreover, the compatibility condition of these flows is equivalent to the vector fields representation (3.16), where \(\psi \in C^2(\mathbb{R}^2 \times \mathbb{R}^n, \mathbb{C}) \) and the vector fields \(A_{\mathbf{v}(\mathcal{L})}^y, A_{\mathbf{v}(\mathcal{L})}^t \in \mathfrak{g}^* \) are given by the expressions (3.14) and (3.11).

Remark 3.2 As mentioned above, the expansion (3.10) is effective if a chosen seed element \(\tilde{l} \in \mathfrak{g}^* \) is singular as \(|l| \to \infty \). In the case when it is singular as \(|l| \to 0 \), the expression (3.10) should be replaced by the expansion

\[
\mathbf{v}(\mathcal{L})(l) \sim \lambda^{-p} \sum_{j \in \mathbb{Z}_+} \mathbf{v}(\mathcal{L})(l) \lambda^j
\]

(3.18)

for suitably chosen integers \(p \in \mathbb{Z}_+ \), and the reduced Casimir function gradients then are given by the Hamiltonian vector field generators

\[
\mathbf{v}(\mathcal{L})(l) := \lambda^p \mathbf{v}(\mathcal{L})(l) \mathbf{v}(\mathcal{L})(l), \quad \mathbf{v}(\mathcal{L})(l) := \lambda^p \mathbf{v}(\mathcal{L})(l) \mathbf{v}(\mathcal{L})(l)
\]

(3.19)

for suitably chosen positive integers \(p, q, r \in \mathbb{Z}_+ \) and the corresponding Hamiltonian flows are, respectively, written as

\[
\frac{\partial}{\partial y} \frac{\partial}{\partial t} \mathcal{L} = -\frac{\partial}{\partial x} \mathbf{v}(\mathcal{L}) \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \mathbf{v}(\mathcal{L})
\]

(3.12)

It is also worth of mentioning that, following Ovsienko's...
scheme [26,27], one can consider a slightly wider class of integrable heavenly equations, realized as compatible Hamiltonian flows on the semidirect product of the holomorphic loop Lie algebra \mathfrak{g} of vector fields on the torus T^1_C and its regular co-adjoint space \mathfrak{g}^*, supplemented with naturally related cocycles.

The Lax–Sato type integrable multi-dimensional heavenly systems and related confomral structure generating equations

Einstein–Weyl metric equation:

Define $\mathfrak{g}^* = \text{diff}(T^1_C)^*$ and take the seed element

$$\bar{l} = (u_x^2 - 2u_xu_y - u_y^2)dx + ((\dot{\mathfrak{g}}^2 - \mathfrak{g}^2 + \mathfrak{g}^2_x + \mathfrak{g}^2_y) + (\dot{\mathfrak{g}}_x + \mathfrak{g}^2_y - \mathfrak{g}^2_x + \mathfrak{g}^2_y)\dot{\mathfrak{g}}_x,$$

which generates with respect to the metric (2.1) the gradient of the Casimir invariants $h_i(p)(p) \in \mathfrak{g}(\mathfrak{g}^*)$ in the form

$$\nabla h_i((l)) \sim \mathfrak{g}(\mathfrak{g}^*) \in \mathfrak{g}(\mathfrak{g}^*),$$

satisfying the compatibility condition (3.15), which is equivalent to the set of equations

$$u_{xt} + u_{yy} + (u_{x}u_{x} + v_{x}v_{y} - v_{y}v_{x}) = 0,$$

$$v_{xt} + u_{yy} + (u_{x}u_{y} + v_{x}c_{y} - v_{y}c_{x}) = 0,$$

which describes generating integral Einstein–Weyl metric equations [16].

As is well known [19], the invariant reduction of (4.3) at $\nu = 0$ gives rise to the famous dispersionless Kadomtsev–Petviashvili equation

$$u_{y} + u_{x}u_{x} + u_{y}u_{y} = 0,$$

for which the reduced vector field representation (3.16) follows from (4.2) and is given by the vector fields

$$A_{\mathfrak{v}h_{(x)}} = (\dot{\mathfrak{g}}^2 + \mathfrak{g}^2_x + \mathfrak{g}^2_y + \mathfrak{g}^2_x = 0,\lambda^2 = \mathfrak{g}^2_x,$$

$$A_{\mathfrak{v}h_{(y)}} = (\dot{\mathfrak{g}}^2 + \mathfrak{g}^2_x - \mathfrak{g}^2_y) = 0,\lambda^2 = \mathfrak{g}^2_x,$$

satisfying the compatibility condition (3.15), equivalent to the equation (4.4). In particular, one derives from (3.16) and (4.5) the vector field compatibility relationships

$$\frac{\partial \nu}{\partial y} + \mathfrak{g}^2_x + \mathfrak{g}^2_y + (\dot{\mathfrak{g}}_x + \mathfrak{g}^2_y - \mathfrak{g}^2_x + \mathfrak{g}^2_y)\dot{\mathfrak{g}}_x = 0,$$

$$\frac{\partial \nu}{\partial y} + \mathfrak{g}^2_x - \mathfrak{g}^2_y = 0,$$

satisfied for $\nu \in C^2(\mathbb{R}^2 \times T^1_C)$ and any $y, t \in \mathbb{R}, \lambda, \xi \in \mathbb{R}^1_C$.

The modified Einstein–Weyl metric equation: This equation system is

$$u_{xt} = u_{yy} + u_xu_y + u_{x}^2, w_{xt} = w_{yy} + w_xw_y + 2w_xw_y - \alpha_y,$$

where $\alpha_y := u_yw_x - w_yu_x$, and was recently derived in [28]. In this case we take also $\mathfrak{g}^* = \text{diff}(T^1_C)^*$, yet for a seed element $\bar{l} \in \mathfrak{g}$ we choose the form

$$\bar{l} = (\dot{\mathfrak{g}}^2 + \mathfrak{g}^2_x + \mathfrak{g}^2_y + \mathfrak{g}^2_x = 0,\lambda^2 = \mathfrak{g}^2_x,$$

which with respect to the metric (2.1) generates two Casimir invariants $I_{(l)}(l), l \in \mathfrak{g}(\mathfrak{g}^*)$, whose gradients are

$$\nabla I_{(l)}((l)) \sim \mathfrak{g}(\mathfrak{g}^*) \in \mathfrak{g}(\mathfrak{g}^*),$$

as $|l|\rightarrow \infty$ at $p_l = 1, p_y = 1$. The corresponding gradients of the Casimir functions $h_{(l)}(h_{(y)}) \in \mathfrak{g}(\mathfrak{g}^*)$, determined by (3.11), generate the Hamiltonian vector field expressions

$$\nabla h_{(l)}(h_{(y)}) \in \mathfrak{g}(\mathfrak{g}^*),$$

satisfying the compatibility condition (3.15), equivalent to the equation (4.4). In particular, one derives from (3.16) and (4.5) the vector field compatibility relationships

$$\frac{\partial \nu}{\partial y} + (\dot{\mathfrak{g}}^2 + \mathfrak{g}^2_x + \mathfrak{g}^2_y + (\dot{\mathfrak{g}}_x + \mathfrak{g}^2_y - \mathfrak{g}^2_x + \mathfrak{g}^2_y)\dot{\mathfrak{g}}_x = 0,$$

$$\frac{\partial \nu}{\partial y} + \mathfrak{g}^2_x - \mathfrak{g}^2_y = 0,$$

satisfied for $\nu \in C^2(\mathbb{R}^2 \times T^1_C)$ and any $y, t \in \mathbb{R}, \lambda, \xi \in \mathbb{R}^1_C$.

The Dunajski heavenly equation system: This equation, suggested in [15], generalizes the corresponding anti-self-dual vacuum Einstein equation, which is related to the Plebański metric and the celebrated Plebański [10,29], second heavenly equation. To study the integrability of the Dunajski equations

$$u_{xt} + u_xu_{x} + u_yu_{y} - u_{x}^2 - v = 0,$$

equation (4.4). In particular, one derives from (3.16) and (4.5) the vector field compatibility relationships

$$\frac{\partial \nu}{\partial y} + (\dot{\mathfrak{g}}^2 + \mathfrak{g}^2_x + \mathfrak{g}^2_y + (\dot{\mathfrak{g}}_x + \mathfrak{g}^2_y - \mathfrak{g}^2_x + \mathfrak{g}^2_y)\dot{\mathfrak{g}}_x = 0,$$

$$\frac{\partial \nu}{\partial y} + \mathfrak{g}^2_x - \mathfrak{g}^2_y = 0,$$

satisfied for $\nu \in C^2(\mathbb{R}^2 \times T^1_C)$ and any $y, t \in \mathbb{R}, \lambda, \xi \in \mathbb{R}^1_C$.

If one assumes that
\[v \gamma(1) \sim u_y + O(\mu^2), \]
\[v \gamma(2) \sim u_t + O(\mu^2), \]
as \(\mu \to 0 \), \(\mu = \lambda - 1 \), and
\[v \gamma(1) \sim u_{yt} + u_xu_y - u_yu_t u_x = 0. \]

Its Lax–Sato representation is the compatibility condition for the first order partial differential equations
\[\frac{\partial \psi}{\partial y} \frac{u_y}{\lambda - 1} = 0, \]
\[\frac{\partial \psi}{\partial t} \frac{u_t}{\lambda - 1} = 0, \]
for a seed element \(I \in \mathbb{C}^* \) in the form
\[I = [u_x^2 + 2u_y^2, u_{yt} + u_{xx}^2 + u_{xy}^2 + u_{yy}^2 + 4u_xu_y + \beta]. \]

Second conformal structure generating equation:
\[u_{xt} + u_xu_{yy} - u_yu_t u_x = 0. \]

For a seed element \(I \in \mathbb{C}^* \) in the form
\[I = \int \frac{dx}{u_x^2 - (\lambda - 1)x^{-1} + u_y^2 - (\lambda - 1)x^{-1} + \cdot + c_2} dx, \]
where \(u \in C^2(\mathbb{T}^2 \times \mathbb{T}^2), x \in \mathbb{T}^1, \lambda \in \mathbb{C} \setminus \{0,1\} \) and "d" denotes the full differential, generates two independent Casimir functionals \(\gamma(1) \) and \(\gamma(2) \) in \(\mathbb{C} \), whose gradients have the following asymptotic expansions:

\[v \gamma(1) \sim u_y + O(\mu^2), \]
\[v \gamma(2) \sim u_t + O(\mu^2), \]
as \(\mu \to 0 \). The commutativity condition
\[\{x(0), x'(0) = 0 \} \]
of the vector fields
\[x(t) = \int \frac{dx}{u_x^2 - (\lambda - 1)x^{-1} + u_y^2 - (\lambda - 1)x^{-1} + \cdot + c_2} dx, \]
where
\[v \gamma(1) \sim u_{yt} + u_xu_y - u_yu_t u_x = 0. \]

First conformal structure generating equation:
\[u_{yt} + u_xu_y - u_yu_t = 0. \]

The seed element \(I \in \mathbb{C}^* \) in the form
\[I = \int \frac{dx}{u_x^2 - (\lambda - 1)x^{-1} + u_y^2 - (\lambda - 1)x^{-1} + \cdot + c_2} dx, \]
where \(u \in C^2(\mathbb{T}^2 \times \mathbb{T}^2), x \in \mathbb{T}^1, \lambda \in \mathbb{C} \setminus \{0,1\} \) and "d" denotes the full differential, generates two independent Casimir functionals \(\gamma(1) \) and \(\gamma(2) \) in \(\mathbb{C} \), whose gradients have the following asymptotic expansions:
whose linearized Lax–Sato representation is given by the first order system

\[
\begin{align*}
\frac{\partial \psi}{\partial y} - \frac{1}{\mu} \frac{\partial \psi}{\partial x} &= 0, \\
\frac{\partial \psi}{\partial t} - \frac{1}{\mu} \frac{u_y}{u_x} \frac{\partial \psi}{\partial x} &= 0
\end{align*}
\]

(4.26)
of linear vector field equations on a function \(\psi \in C^2(\mathbb{R}^2 \times T^1; \mathbb{R}) \).

Inverse first Shabat reduction heavenly equation: A seed element \(\tilde{1} \in G^* = \text{diff}(T^1)^0 \) in the form

\[
\tilde{1} = (a_0 u_y^2 u_x^2 (\lambda + 1)^{-1} + a_1 u_y^2 + a_2 u_x^2 \lambda) dx,
\]

(4.27)
where \(u \in C^2(\mathbb{T}^1 \times \mathbb{R}; \mathbb{R}), \ x \in \mathbb{T}^1, \ \lambda \in \mathbb{C} \setminus \{-1\} \), and \(a_0, a_1 \in \mathbb{R} \), generates two independent Casimir functionals \(\gamma_1^{(1)} \) and \(\gamma_2^{(2)} \in \text{IG}(G^*) \), whose gradients have the following asymptotic expansions:

\[\gamma_1^{(1)}(t) \sim -u_y u_x x + 0(\lambda^2), \quad \gamma_2^{(2)}(t) \sim -u_y u_x x + 0(\lambda^2),\]

(4.28)
as \(|\mu| \to 0 \), \(\mu : = \lambda + 1 \), and

\[\gamma_3^{(3)}(t) \sim -u_y u_x x + 0(\lambda^2),\]

(4.29)
as \(|\lambda| \to \infty \). If we put, by definition,

\[
\begin{align*}
\psi_1^{(1)}(t) &= (\lambda^{-1} u_y u_x x) dx, \\
\psi_2^{(2)}(t) &= (\lambda^{-1} u_y u_x x) dx,
\end{align*}
\]

(4.30)
the commutativity condition (4.19) of the vector fields (4.20) leads to the heavenly equation

\[
u_{xy} + u_y u_{tx} - u_t u_{xy} = 0,
\]

(4.31)
which can be obtained as a result of the simultaneous changing of independent variables \(R \ni x \to t \in \mathbb{R}, \ R \ni y \to x \in \mathbb{R} \) and \(R \ni t \to y \in \mathbb{R} \) in the first Shabat reduction heavenly equation. The corresponding Lax–Sato representation is given by the compatibility condition for the first order vector field equations

\[
\begin{align*}
\frac{\partial \psi}{\partial y} - \frac{1}{\mu} \frac{u_y}{u_x} \frac{\partial \psi}{\partial x} &= 0, \\
\frac{\partial \psi}{\partial t} + \frac{\lambda}{u_x} \frac{\partial \psi}{\partial x} &= 0
\end{align*}
\]

(4.32)
where \(\psi \in C^2(\mathbb{R}^2 \times T^1; \mathbb{R}) \).

First Plebański heavenly equation and its generalizations: The seed element \(\tilde{1} \in G^* = \text{diff}(T^1)^0 \) in the form

\[
\tilde{1} = \lambda^{-1}(u_x u_{x1} + u_y u_{x2}) dx_1,
\]

(4.33)
where \(u \in C^2(\mathbb{T}^2 \times \mathbb{R}; \mathbb{R}), \ (x_1, x_2) \in \mathbb{T}^2, \ \lambda \in \mathbb{C} \setminus \{0\} \) and "ed" designates a full differential, generates two independent Casimir functionals \(\gamma_1^{(1)} \) and \(\gamma_2^{(2)} \in \text{IG}(G^*) \), whose gradients have the following asymptotic expansions:

\[\gamma_1^{(1)}(t) \sim (-u_y x u_{x1} u_{x1} + 0(\lambda)), \quad \gamma_2^{(2)}(t) \sim (-u_y x u_{x2} u_{x2}) + 0(\lambda), \]

(4.34)
as \(|\mu| \to 0 \). The commutativity condition (4.19) vector fields (4.20), where

\[
\begin{align*}
\psi_1^{(1)}(t) &= (\lambda^{-1} u_y x u_{x1} u_{x1}) dx_1 - \frac{u_y x u_{x1}}{\lambda} dx_2, \\
\psi_2^{(2)}(t) &= (\lambda^{-1} u_y x u_{x2} u_{x2}) dx_2 - \frac{u_y x u_{x2}}{\lambda} dx_1,
\end{align*}
\]

(4.35)
leads to the first Plebański heavenly equation [13]:

\[
u_{xy} x u_{x1} - u_y x u_{x2} u_{x1} = 0.
\]

(4.36)
Its Lax–Sato representation entails the compatibility condition for the first order partial differential equations

\[
\begin{align*}
\frac{\partial \psi}{\partial y} - \frac{1}{\mu} \frac{u_y}{u_x} \frac{\partial \psi}{\partial x} &= 0, \\
\frac{\partial \psi}{\partial t} + \frac{\lambda}{u_x} \frac{\partial \psi}{\partial x} &= 0
\end{align*}
\]

(4.37)
where \(\psi \in C^\infty(\mathbb{R}^2 \times T^1; \mathbb{C}) \).

Taking into account that the determining condition for Casimir invariants is symmetric and equivalent to the system of nonhomogeneous linear first order partial differential equations for the covector function \(t \mapsto (u_1, u_2) \), the corresponding seed element can be also chosen in another forms. Moreover, the form (4.33) is invariant subject to the spatial dimension of the underlying torus \(\mathbb{T}^n \), what makes it possible to describe the related generalized conformal metric equations for arbitrary dimension.

In particular, one easily observes that the asymptotic expansions (4.34) are also true for such invariant seed elements as

\[\tilde{1} = \lambda^{-1} (du_{xy} + du_y)\]

The described above Lie–algebraic scheme can be easily generalized for any dimension \(n \in 2k \), where \(k \in \mathbb{N} \), and \(n \geq 2 \).

In this case one has \(2k \) independent Casimir functionals \(\gamma_j^{(j)} \in \text{IG}(G^*) \), whose gradients have the following asymptotic expansions for their gradients:

\[
\begin{align*}
\gamma_1^{(1)}(t) &\sim (-u_y x u_{x1} u_{x1} + 0(\lambda)), \\
\gamma_2^{(2)}(t) &\sim (-u_y x u_{x2} u_{x2}) + 0(\lambda), \\
\gamma_3^{(3)}(t) &\sim (0, 0, -u_y x u_{x2} u_{x1} u_{x1} + 0(\lambda)), \\
\gamma_4^{(4)}(t) &\sim (0, 0, -u_y x u_{x2} u_{x1} u_{x1} + 0(\lambda)), \ldots,
\end{align*}
\]

(4.38)
In the case, when \(k \to \infty \), there exist two independent Casimir functionals \(\gamma_1 \) and \(\gamma_2 \) in \(\mathfrak{g}(\mathfrak{g}^*) \) with the following gradient asymptotic expansions:

\[
\gamma_1(1)(\lambda) \sim (u_{yx21},-u_{yx11})^\top + O(\lambda),
\]
as \(|\lambda| \to 0 \), and

\[
\gamma_2(2)(\lambda) \sim (0,-0)^\top + (-u_{yx12},u_{yx21})^\top \lambda^{-1} + O(\lambda^{-2}),
\]
as \(|\lambda| \to \infty \). In the case, when

\[
\gamma_k(1)(\lambda) := (\lambda^{-1}\gamma_k(1)(\lambda))_L = \frac{u_{yx2m}}{\lambda} \frac{\partial}{\partial x_1} + \frac{u_{yx2m-1}}{\lambda} \frac{\partial}{\partial x_2},
\]
the commutativity condition (4.19) of the vector fields (4.20) leads to the modified Plebański heavenly equation [13]:

\[
u_{yt} - u_{yx21}u_{yx22} + u_{yx21}u_{yx11} = 0,
\]
with the Lax–Sato representation given by the first order partial differential equations

\[
d\psi - \frac{u_{yx21}}{\lambda} \frac{\partial \psi}{\partial x_1} + \frac{u_{yx11}}{\lambda} \frac{\partial \psi}{\partial x_2} = 0,
\]
\[
d\psi - \frac{u_{yx21}}{\lambda} \frac{\partial \psi}{\partial x_1} + (u_{yx11} - \lambda) \frac{\partial \psi}{\partial x_2} = 0
\]
for functions \(\psi \in C^2(\mathbb{R}^2 \times \mathbb{C}^2; \mathbb{C}) \).

The differential–geometric form of the seed element (4.37) is also dimension invariant subject to additional spatial variables of the form \(u_{2n} \), \(n > 2 \), what poses a natural question of finding the corresponding multi-dimensional generalizations of the modified Plebański heavenly equation (4.38).

If a seed element \(\mathfrak{g}^* = \text{diff}(\mathbb{R}^{2k})^* \) is chosen in the form (4.37), where \(u \in C^2(\mathbb{R}^{2k} \times \mathbb{R}^2; \mathbb{C}) \), we have the following asymptotic expansions for gradients of \(u \in \mathbb{R}^2 \) independent Casimir functionals \(\gamma_1(\mathfrak{g}^*) \), where \(\gamma^* = \text{diff}(\mathbb{R}^{2k})^* \), \(j = 1, 2k \):

\[
u_j(1)(\lambda) \sim (-u_{yx21},u_{yx11},0,\ldots,0)^\top + O(\lambda),
\]
\[
u_j(2)(\lambda) \sim (0,0,-u_{yx21},u_{yx11},0,\ldots,0)^\top \lambda^{-1} + O(\lambda^{-2}),
\]
as \(|\lambda| \to 0 \), and

\[
u_j(2k)(\lambda) \sim (0,0,0,\ldots,0,u_{yx21},u_{yx11})^\top \lambda^{-1} + O(\lambda^{-2}),
\]
as \(|\lambda| \to \infty \). In the case, when

\[
\gamma_k(1)(\lambda) := (\lambda^{-1}\gamma_k(1)(\lambda))_L = \frac{u_{yx2m}}{\lambda} \frac{\partial}{\partial x_1} + \frac{u_{yx2m-1}}{\lambda} \frac{\partial}{\partial x_2},
\]
the commutativity condition (4.19) of the vector fields (4.20) leads to the following multi-dimensional generalizations of the modified Plebański heavenly equation:

\[
u_{yt} - \sum_{m=1}^{k} (u_{yx2m}u_{yx2m-1} - u_{yx2m-1}u_{yx2m}) = 0.
\]

Husain heavenly equation and its generalizations: A seed element \(\mathfrak{g}^* = \text{diff}(\mathbb{R}^{2k})^* \) in the form

\[
I = \frac{d(yu + uy)}{\lambda - i} + \frac{d(yu - uy)}{\lambda + i} = \frac{2(iyu - duy)}{\lambda^2 + 1},
\]

where $\lambda^2 = -1$, $d\lambda = 0$, $u \in \mathbb{C}^2(\tau^2 \times \mathbb{R}^2; \mathbb{R})$, $(x_1, x_2) \in \mathbb{T}$, and we have the following Casimir functionals $\mathcal{J}_{(1)}$ and $\mathcal{J}_{(2)}$, with the following gradient asymptotic expansions:

$$\mathcal{J}_{(1)}(y) \sim \frac{1}{2}(-u_{y_2} - i u_{x_2} u_{x_1} + i u_{x_1}) \mathcal{T} + O(\mu), \quad \mu := \lambda - i,$$

as $|\mu| \to 0$, and

$$\mathcal{J}_{(2)}(y) \sim \frac{1}{2}(-u_{y_2} + i u_{x_2} u_{x_1} - i u_{x_1}) \mathcal{T} + O(\xi), \quad \xi := \lambda + i,$$

as $|\xi| \to 0$. In the case, when

$$\mathcal{H}(y)(i) := \mathcal{H}_{(1)}(y) + \mathcal{H}_{(2)}(y),$$

the commutativity condition (4.19) of the vector fields (4.20) leads to the Husain heavenly equation [13]:

$$u_{yy} + u_{tt} + u_{x_1} u_{y_2} - u_{y_2} u_{x_1} = 0,$$

(4.40)

with the Lax–Sato representation given by the first order partial differential equations

$$\frac{\partial \psi}{\partial y} + \frac{u_{y_2} - \lambda u_{y_2} + \psi}{\lambda^2 + 1} \frac{\partial \psi}{\partial x_1} - \frac{\lambda u_{x_1} - u_{x_1}}{\lambda^2 + 1} \frac{\partial \psi}{\partial x_2} = 0,$$

and

$$\frac{\partial \psi}{\partial t} + \frac{u_{y_2} + \lambda u_{y_2} + \psi}{\lambda^2 + 1} \frac{\partial \psi}{\partial x_1} + \frac{\lambda u_{x_1} + u_{x_1}}{\lambda^2 + 1} \frac{\partial \psi}{\partial x_2} = 0,$$

where $\psi \in \mathbb{C}^2(\tau^2 \times \mathbb{R}^2; \mathbb{C})$.

The differential–geometric form of the seed element (4.39) is also dimension invariant subject to additional spatial variables of the torus \mathbb{T}^n, $n > 2$, what poses a natural question of finding the corresponding multi-dimensional generalizations of the Husain heavenly equation (4.40).

If a seed element $\tilde{l} \in \mathcal{U}^\ast$ is chosen in the form (4.39), where $u \in \mathbb{C}^2(\tau^{2k} \times \mathbb{R}^2; \mathbb{R})$, we have the following asymptotic expansions for gradients of $2k \in \mathbb{N}$ independent Casimir functionals $\mathcal{J}_j(\tilde{l}) \in \mathbb{I}(\mathcal{G})^\ast$, where $\mathcal{G} = \text{diff}(\mathbb{R}^{2k})^\ast$,

$$\mathcal{J}_j(\tilde{l}) \sim \frac{1}{2}(-u_{y_2} - i u_{x_2} u_{x_1} + i u_{x_1} o_{y_2} \mathcal{T} + O(\mu), \quad \mu := \lambda - i,$$

...
In the case when $\gamma(1)$ and $\gamma(2)$, the corresponding seed element can be chosen and are,

$$u_{x_4} u y_{x_2} - u u_{x_2} u y_{x_4} , u u_{x_2} u y_{x_3} - u u_{x_3} u y_{x_2}$$

whose gradients have the following asymptotic expansions:

$$v_j(1) \sim (0,1,0,0)^T + (u x_2 - u x_1)^2 u y_{x_2} y_{x_1} - (u x_2 - u x_1)^2 u y_{x_2} y_{x_1,0,0}$$

$$v_j(2) \sim (0,0,1,0,0)^T + (u x_1 - u x_2)^2 u y_{x_2} x_{x_1} - (u x_1 - u x_2)^2 u y_{x_2} x_{x_1,0,0}$$

$$v_j(3) \sim (0,0,0,1,0,0)^T + (u x_2 - u x_3)^2 u y_{x_3} y_{x_2} - (u x_2 - u x_3)^2 u y_{x_3} y_{x_2,0,0}$$

$$v_j(4) \sim (0,0,0,0,1,0,0)^T + (u x_3 - u x_4)^2 u y_{x_4} x_{x_3} - (u x_3 - u x_4)^2 u y_{x_4} x_{x_3,0,0}$$

as $|\lambda| \to 0$. If a seed element has the form

$$\tilde{t} = d y_t + d u + \lambda^{-1}(d x_1 + d x_2),$$

the asymptotic expansions for gradients of four independent Casimir functionals $\gamma(1), \gamma(2), \gamma(3)$ and $\gamma(4)$ in $\ell(\hat{g}^*)$ are written as

$$v_j(1) \sim (0,1,0,0)^T + (d u y_{x_2} + d u x_2, -d u x_2 - d u x_1) ,$$

$$(\tilde{t} - x_2 - x_1)^2 (u x_2 x_1 + u x_2 x_1),$$

$$(\tilde{t} - x_2 - x_1)^2 (u x_1 x_1 + u x_1 x_2, 0,0)^T + O(\lambda^2),$$

$$v_j(2) \sim (0,0,1,0,0)^T + (d u y_{x_2} + d u x_2, -d u x_2 - d u x_1) ,$$

$$(\tilde{t} - x_2 - x_1)^2 (u x_2 x_1 + u x_2 x_1, 0,0)^T + O(\lambda^2),$$

$$v_j(3) \sim (0,0,0,1,0,0)^T + (d u y_{x_2} + d u x_2, -d u x_2 - d u x_1) ,$$

$$(\tilde{t} - x_2 - x_1)^2 (u x_2 x_1 + u x_2 x_1, 0,0)^T + O(\lambda^2),$$

$$v_j(4) \sim (0,0,0,0,1,0,0)^T + (d u y_{x_2} + d u x_2, -d u x_2 - d u x_1) ,$$

$$(\tilde{t} - x_2 - x_1)^2 (u x_2 x_1 + u x_2 x_1, 0,0)^T + O(\lambda^2),$$

as $|\lambda| \to 0$.
(4.45). If -dimensional super-torus and give rise to the if . Then the commutativity condition for the over , and ,

When a seed element \(\hat{1} \in \mathcal{G}^* \) is chosen as \((4.45)\). If

\[
\nabla h(y)(j) := (\lambda^{-1} \nabla y(1)(j) + \nabla y(3)(j) + \ldots + \nabla (2k-1)(j))) =
\]
\[
= 0 + \frac{1}{\lambda} \frac{\partial}{\partial x_k} - \frac{u y x_k}{\lambda} \frac{\partial}{\partial x_k} + \frac{u y x_{k-1}}{\lambda} \frac{\partial}{\partial x_k} - \ldots
\]

the commutativity condition \((4.19)\) of the vector fields \((4.20)\) leads to the following multi-dimensional analogs of the general Monge heavenly equation:

\[
\nabla y x_1 + u y x_2 + \sum_{j=2}^k (u y x_{j-1} - u y x_{j-1} u y x_{j-1} - u y x_{j-1} u y x_{j-1}) = 0.
\]

Superanalogs of the Witham heavenly equation

Assume now that an element \(\hat{1} \in \mathcal{G}^* \), where

\[
\mathcal{G} := \mathfrak{d}iff(\mathbb{C}^N)^N \oplus \mathfrak{d}iff(\mathbb{C}^N)^N
\]

is the loop Lie algebra of the superconformal diffeomorphisms group \(\mathfrak{d}iff(\mathbb{C}^N)^N \) of vector fields on the one-dimensional super-torus

\[
\mathbb{T}_C := \mathbb{C}^N \times \mathbb{A}^N
\]

is imbedded into a finite-dimensional Grassmann algebra \(\Lambda := \Lambda_0 \oplus \Lambda_1 \) over \(\mathbb{C} \), \(\Lambda_1 \supset \mathbb{R} \), admits the following asymptotic expansions for gradients of the Casimir invariants \(h(1), h(2) \in \mathfrak{g}^* \):

\[
\nabla h(1)(l) \sim w y + O(\lambda)
\]

as \(| l | \to 0 \), and

\[
\nabla h(2)(l) \sim 1 - w x_\lambda^{-1} + O(\lambda^{-2})
\]

as \(| l | \to \infty \). Then the commutativity condition for the Hamiltonian flows

\[
\frac{dl}{dy} = ad^*(\nabla h(y)(l)), \quad \nabla h(y)(0) = -(\lambda^{-1} \nabla h(1)(l))_x = -w y_\lambda^{-1},
\]

\[
\frac{dl}{dt} = -ad^*(\nabla h(l)(l)), \quad \nabla h(l)(0) = -(\lambda^{-2} \nabla h(2)(l))_x = -\lambda + w x,
\]

naturally leads to the heavenly type equation

\[
w_{yt} = w x w w x - w y w x = \frac{N}{2} \sum_{i=1}^N (D_q w w x)(D_q w x),
\]

where \(w \in \mathbb{C}^2(\mathbb{R}^2 \times \mathbb{C}^N; \Lambda_0) \) and \(D_q := \frac{\partial}{\partial q} + \frac{\partial}{\partial x}, i = \mathbb{1} \mathbb{N}, \)

are superderivatives with respect to the anticommuting variables \(\hat{q} \in \Lambda_1, i = \mathbb{1} \mathbb{N} \).

This equation can be considered as a super-generalization of the Witham heavenly one \([17,18,31]\) for arbitrary \(N \in \mathbb{N} \). The compatibility condition for the first order partial differential equations

\[
\nabla y + \frac{1}{\lambda} \left(w y w x + \frac{N}{2} \sum_{i=1}^N (D_q w w x)(D_q w x) \right) = 0,
\]

\[
\nabla x + (\lambda + w x w x) + \frac{N}{2} \sum_{i=1}^N (D_q w w x)(D_q w x) = 0,
\]

where \(\nabla \in \mathbb{C}^2(\mathbb{R}^2 \times \mathbb{C}^N; \Lambda_0) \) and \(\lambda \in \mathbb{C} \setminus \{0\} \), give rise to the corresponding Lax–Sato representation of the heavenly type equation \((5.4)\).

Moreover, based on easy calculations, one can obtain from the Casimir invariant equation the corresponding seed element \(l := (\mathbf{dx} \in \mathcal{G}^*) \), which can be written in the following form for an arbitrary \(N \in \mathbb{N} \):

\[
\mathfrak{g} := \mathfrak{d}iff(\mathbb{C}^N)^N \oplus \mathfrak{d}iff(\mathbb{C}^N)^N
\]

where a scalar function \(C = C(x; \theta) \) satisfies a linear homogeneous ordinary differential equation

\[
\mathcal{L}_x C \phi = (Q_1, \ldots, Q_N), \quad Q \phi := (D_q \mathfrak{L}(\mathfrak{L}) \mathfrak{a} = D_q \mathfrak{L}(\mathfrak{a})) \in \mathbb{R}^N \setminus \mathbb{Z}^N, \quad \mathbb{A}^N \times \mathbb{A}^N \times \mathbb{A}^N \times \mathbb{A}^N
\]

Moreover, \(C \in \mathbb{C}^N(\mathbb{C}^N; \Lambda_1) \), if
N is an odd natural number, and suitably $C \in C^\infty(\mathbb{R}^2 \times S^1; \Lambda_0)$, if N is an even integer. In the case of $N = 1$ one has

$$l = C_1(\bar{\partial}_x^3 D_{\partial y} \frac{1}{2} \partial_y^2 - \frac{3}{2} \partial_y^2,$$

where $C_1 \in R$ is some real constant.

If $N = 1$ and $C_1 = 1$, the corresponding seed–element \(\bar{l} \in \mathfrak{g}^* \), related to the asymptotic expansions (5.1) and (5.2), can be reduced to

$$l = [\partial^3_x D_{\partial y} \frac{1}{2} \partial_y^2 + \frac{3}{2} \partial_y^2 + \bar{\partial}_x^3 (2 \partial_u + \lambda)] dx,$$

where $w := u + \partial_u \bar{l}$, $u \in C^\infty(\mathbb{R}^2 \times S^1; \Lambda_0)$ and \(\xi \in C^\infty(\mathbb{R}^2 \times S^1; \Lambda_1) \).

The Lax-Sato vector field integrability structure of the Monge type dynamical systems

Let us consider on a functional manifold $M = C^\infty(\mathbb{R} / 2 \pi z; \mathbb{R}^2)$ the following commuting to each other nonlinear dispersionless Monge type dynamical systems:

$$u_y = -(u^2 + 2v) x, \quad v_y = (v^2 - 2uv) x,$$

(6.1)

with respect to the evolution parameter $y \in \mathbb{R}$, and

$$u_t = \left(\frac{3}{2} v^2 - 6uv - u^3 \right) x,$$

$$v_t = -\left(v^3 - 3u^2v + 3uv^2 - 3v^2 \right) x,$$

(6.2)

with respect to the evolution parameter $t \in \mathbb{R}$, $(u,v) \in M$. Choose now, by definition, a seed element $\bar{l} \in \mathfrak{g}^*$ in the next form:

$$\bar{l} = (u x^2 + (v + u^2) x) \partial_x + (\lambda^2 + 2u \partial_x + v + u^2) \partial_\lambda =$$

$$= \partial_x \left(\frac{3}{2} \partial_x^3 + u x^2 + (v + u^2) \partial_\lambda \right),$$

(6.3)

and calculate the vector fields on the complexified torus \mathbb{C}^2_1:

$$v_h(y) := v_h(1) \mid \lambda = u \partial_x - u x \partial_\lambda,$$

$$v_h(2) \mid \lambda = v \partial_x + (v + u^2) \partial_\lambda$$

(6.4)

and commuting to each other, that is

$$X(t) := \frac{\partial}{\partial t} \left[(2iu_\lambda - 4i\lambda^3 - uy) x_1 + (4\lambda^2 u + 2iu_\lambda - uy - 2u^2) x_2 \right] \frac{\partial}{\partial x_1},$$

$$X(t) := \frac{\partial}{\partial t} \left[(2u - 4\lambda^2) x_1 + (4\lambda^3 + uy - 2u_\lambda) x_2 \right] \frac{\partial}{\partial x_2},$$

(7.1)

and

$$X(t) := \frac{\partial}{\partial t} \left[-(i\lambda x_1 + uy) x_2 \right] \frac{\partial}{\partial x_1} + \left(i\lambda x_2 - x_1 \right) \frac{\partial}{\partial x_2},$$

(7.2)

and

$$\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial t} \right] \left[(2iu_\lambda - 4i\lambda^3 - uy) x_1 + (4\lambda^2 u + 2iu_\lambda - uy - 2u^2) x_2 \right] \frac{\partial}{\partial x_1} =$$

$$+ \left[(2u - 4\lambda^2) x_1 + (4\lambda^3 + uy - 2u_\lambda) x_2 \right] \frac{\partial}{\partial x_2},$$

(7.3)

and

$$\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial t} \right] \left[-(i\lambda x_1 + uy) x_2 \right] \frac{\partial}{\partial x_1} + \left(i\lambda x_2 - x_1 \right) \frac{\partial}{\partial x_2} =$$

(7.4)

for all $t, y \in \mathbb{R}$.

The vector field generators

$$v_h(t)(i) := \langle v h(t)(i) \rangle, v_h(y)(i) := \langle v h(y)(i) \rangle,$$

(7.5)

where, by definition,

$$v_h(t)(i) := \lambda \left[-uy x_1 - uy y_2 + 2u^2 x_2 \right] + \lambda^2 \left[2ux_1 + 2uy y_2 \right] - 2u^2 x_2,$$

$$+ \lambda^2 \left[4ux_2 - 4x_1 \right] + \lambda^2 \left[-4ux_1 \right],$$

(6.5)

and

$$v_h(y)(i) := \lambda \left[ux_2 + \lambda y x_1 \right],$$

(6.6)

are holomorphic sections of $\mathcal{T}(\mathbb{C}^2_1)$. The latter can be naturally interpreted as elements of the holomorphic (in $\lambda \in \mathbb{B}_+$ on the unit disc $\mathbb{B}_+ \subset \mathbb{C}$) subalgebra \mathfrak{h}_λ of the holomorphic loop Lie algebra $\mathfrak{g} := \text{diff}(\mathbb{C}^2_1) \cong \mathfrak{h}_\lambda \oplus \mathfrak{h}_\lambda$.

the holomorphic loop diffeomorphism group $\text{Diff}(\mathbb{S}_1^1)$ on \mathcal{C}, related with some its smooth Casimir invariants $h(0), h(y) \in \Lambda^*(\mathbb{R}^2)$, $\delta^* \subset \Lambda^1(\mathbb{R}^2) = \Lambda^1(\mathbb{R}^2) \otimes \mathcal{C}$ on the finite-dimensional invariant adjoint space δ^*, calculated at some point $I \in \delta^*$, where

$$I := \int_1^2 \mathcal{L} dx_j, \quad (7.7)$$

whose coefficients $\mathcal{L} \in \mathcal{R}(\mathbb{R}^2)$ can be taken in the following polynomial form:

$$\mathcal{L} := \sum_{m=0}^N \sum_{j=1,2} \mathcal{L}(m)x^j x^m, \quad (7.8)$$

for some set of matrix valued functions $\{a(m) \in \mathbb{C}^2(\mathbb{R}^2) : \text{End} \mathcal{C}^2, \forall m \in 0, \mathcal{N}\}$. Casimir functionals $\mathcal{L} \in \mathcal{L}(\delta)$ satisfy at the point $I \in \delta^*$ the following invariance equation

$$\mathcal{L} := \mathcal{L}(0), \quad (7.9)$$

where $\mathcal{L} := \langle \mathcal{L}\rangle = \langle \mathcal{L}\rangle, \forall \mathcal{L}$ are vector fields, coinciding with ones generated by vector expansions (7.6). The determining equation (7.9) has a general vector field solution

$$\mathcal{L} := \sum_{j=1}^N \mathcal{L}(j)x^j x^m, \quad (7.10)$$

whose coefficients, as $|x| \to \infty$, allow for every $j = 1,2$ the asymptotic expansions

$$\mathcal{L} := \mathcal{L}(0), \quad (7.11)$$

and satisfy for every $k = 1,2$ the following differential relationships

$$\sum_{j=1,2} \mathcal{L}(j) = \mathcal{L}(0), \quad (7.12)$$

If now to define the matrices

$$\mathcal{L}(m) := \mathcal{L}(m), \quad (7.13)$$

for every $m \in 0, \mathcal{N}$, as a result of simple calculations, one obtains a system of the matrix algebraic equations

$$\sum_{m=0}^N \mathcal{L}(m)x^j x^m = \mathcal{L}(0), \quad (7.14)$$

for $p \in \mathbb{Z}_+$, where by definition, the trace $\text{tr} \mathcal{L}(m) := \sum_{j=1,2} \mathcal{L}(j)$, and whose solution, a set of matrices $\{a(m) \in \text{End} \mathcal{C}^2 : m \in 0, \mathcal{N}\}$, generates the searched for seed element (7.7).

For solving a system of the matrix algebraic equations (4.22) we put the degree $N = 2$ and solve successively the following three matrix algebraic equations:

$$\sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m = 0, \quad (7.15)$$

at $p = 0$,

$$\sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m = 0, \quad (7.16)$$

at $p = 1$, and

$$\sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m = 0, \quad (7.17)$$

at $p = 2$. For example, a $p = 2$ they naturally reduce to the following matrix equation

$$\sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m + \sum_{m=0}^2 \mathcal{L}(m)x^j x^m = 0, \quad (7.18)$$

whose general solution gives rise to an exact representation for the seed element (7.8), and thus to the representation of the Korteweg-de Vries dynamical system as a Hamiltonian flow

$$\mathcal{L}/\mathcal{L}^\prime = -\text{ad}^*_{\mathcal{L}(0)} \mathcal{L}, \quad (7.19)$$

exactly equivalent to that on the functional manifold M. More detailed properties of the matrix equation (7.18) and analysis of its solutions is planned to be presented elsewhere.

The group orbit structure of the Chaplygin hydrodynamical system

Consider the following Chaplygin [32–35], hydrodynamical system

$$u_t = -uu_x - kv_x - v^3, \quad (8.1)$$

$$v_t = -(uv)_x, \quad (8.2)$$

where $k \in \mathbb{R}$ is a constant parameter, $(u, v) \in M \subset C^\infty(\mathbb{R} / 2\pi \mathbb{Z}; \mathbb{R}^2)$ are 2π-periodic dynamical variables on the functional manifold M with respect to the evolution parameter $t \in \mathbb{R}$. To describe the geometric structure of the system (8.1), let us define the loop Lie algebra $\delta^* := \delta(\mathbb{R}^2)^1$ on the one-dimensional complexified torus \mathbb{R}^1; and take a seed element $\{a(m) \in \text{End} \mathcal{C}^2, m = 0, \mathcal{N}\}$, generates the searched for seed element (7.7).
where
\[
\begin{align*}
 \mathcal{V}(2) & = \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} u_x & 0 \\ 0 & u_y \end{pmatrix} \lambda + \begin{pmatrix} u & 0 \\ 0 & 0 \end{pmatrix} \lambda^2 + 0(\lambda^{-1}) \\
 \mathcal{V}(4) & = \begin{pmatrix} -8 & 0 \\ 0 & 4u_x \end{pmatrix} \lambda^4 + \begin{pmatrix} -4u & 0 \\ 0 & 0 \end{pmatrix} \lambda^2 + 0(\lambda^{-1}) \\
 \mathcal{V}(6) & = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lambda^6 + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lambda^6 + 0(\lambda^{-1}) \\
\end{align*}
\]
and
\[
\begin{align*}
 \mathcal{V}(8) & = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lambda^8 + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lambda^8 + 0(\lambda^{-1}).
\end{align*}
\]

The related Casimir functionals being equivalent and being associated with the evolution parameter \(\lambda \). Based on the gradient expressions (8.6) and (8.8), one can calculate successively the following evolution flows:

\[
\frac{\partial}{\partial t} \mathcal{V}(2)(t) = \begin{pmatrix} -2 & 0 \\ 0 & 0 \end{pmatrix} \lambda + \begin{pmatrix} u_x & 0 \\ 0 & u_y \end{pmatrix} \lambda^2 + 0(\lambda^{-1}),
\]

\[
\left\{ \begin{array}{l}
 \frac{\partial}{\partial t} \mathcal{V}(4)(t) = \begin{pmatrix} -8 & 0 \\ 0 & 4u_x \end{pmatrix} \lambda^4 + \begin{pmatrix} -4u & 0 \\ 0 & 0 \end{pmatrix} \lambda^2 + 0(\lambda^{-1}) \\
 \mathcal{V}(6)(t) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lambda^6 + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lambda^6 + 0(\lambda^{-1})
\end{array} \right.
\]

As it was demonstrated in [22]. Chaplygin hydrodynamic system (8.8) is closely related with a class of completely integrable Monge type equations, whose geometric structure was also recently analyzed in [14], using a different approach, based on the Grassmann manifold embedding properties of general differential systems defined on jet-submanifolds. The latter poses an interesting problem of finding relationships between different geometric approaches to describing completely integrable dispersionless differential systems.

Conclusion

Within the review we described the Lie-algebraic approach to studying vector fields on the complexified one-dimensional completely integrable Heavenly type Hamiltonian flows and their differential-geometric structure. The dispersionless completely integrable Heavenly type Hamiltonian flows and their differential-geometric structure. Ann Math Phys 2(1): 011-025. DOI: http://dx.doi.org/10.17352/amp.000006

\[[\partial / \partial t + \mathcal{V}(t), \partial / \partial y + \mathcal{V}(y)] = 0, \]

\[[\partial / \partial t + \mathcal{V}(5), \partial / \partial y + \mathcal{V}(y)] = 0, \]

of commuting to other Lax-Sato type vector fields on the complexified torus \(\mathbb{T}^1_C \) for all parameters \(t, y \) and \(s \in \mathbb{R} \), giving rise to three new compatible systems of integrable heavenly type dispersionless differential equations. The obtained above result can be formulated as the following theorem.

Theorem 8.1: The Chaplygin hydrodynamic system (8.8) is equivalent to the completely integrable Hamiltonian system (8.10) on the adjoint space \(\mathfrak{g}^* \) to the loop Lie algebra \(\mathfrak{g} \equiv \text{diff}(\mathbb{T}^1_C) \) of vector fields on the complexified torus \(\mathbb{T}^1_C \). The related Casimir functionals on \(\mathfrak{g}^* \) generate an infinite hierarchy of commuting to each other additional both Hamiltonian systems, like (8.9) and (8.10), and Lax-Sato type vector fields on \(\mathbb{T}^1_C \), resulting in some new heavenly type dispersionless equations.
torus and the related diffeomorphisms group orbits on them. An interesting inference from the construction, presented in the work, is the existence of dual seed elements and the related compatible hierarchies of the integrable Chaplygin type hydrodynamic evolution systems, whose generating Casimir functionals are related to each other via a simple affine shifting symmetry.

Acknowledgements

The authors are cordially indebted to Anatolij M. Samoilenko, Gerald Goldin, Denis Blackmore, Maciej Blaszak, Błażej Szałkowski, Maxim Pavlov and Artur Sergietyev for useful comments and remarks, especially for elucidating the references, which were very instrumental when preparing a manuscript. They also are indebted to Prof. Anatol Odzijewicz for fruitful and instructive discussions during the XXXVIII Workshop on Geometric Methods in Physics held on June 30 – July 06, 2019 in Białowieża, Poland. A.P. thanks also the Department of Mathematical Sciences of the Rutgers University and the NJIT University of Technology (NJ, USA) for invitations to visit them during the Spring Semester-2019, where there was prepared an essential part of the present work. The acknowledgements belong to the Department of Physics, Mathematics and Computer Science of the Cracov University Technology for a local research grant F-2/370/2018/DS.

References

