Clinical efforts to diagnostically evaluate women-and men-with breast cancer have resulted in various degrees of success. The use of external radiographic sources to look for tissue abnormalities—mammography—has according to the Cochrane Collaboration not been able to demonstrate a reduction in mortality [1]; a position also held by the National Cancer Institute and The Canadian Trial [2].

Given the failure of mammograms to reliably find and exclude breast cancer, a variety of investigations looking at ultrasound, Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), have failed to yield significantly better results.

In 2019, following efforts by DenseBreasts.org [3] and others, U.S. Federal Legislation was passed requiring all mammograms to include a statement specifying that women with dense breasts—which represents 50% of all women—need to be aware that mammograms may miss breast cancers in women whose breast tissue is considered dense.

During the last two–decades investigations into the ability to quantitatively measure changes in regional blood flow and metabolism—thus allowing differentiation of tissue—have demonstrated that FMTVDM* [4] can measure these tissue differences making it possible to distinguish between (A) inert material—calcium, breast implants, etc. – (b) normal breast tissue—including the fibroglandular tissue referred to as dense breast tissue, (C) inflammatory changes—including infections, (D) precancerous and ductal carcinoma in-situ, and (E) cancers [5–40].

As a result of these investigations, FMTVDM was patented [4] in 2017 and has been undergoing additional investigation in Nevada [41,42]. It is currently scheduled to be implemented in the curriculum of U.S. training programs [43] – thus opening the doorway between the worlds of qualitative and quantitative breast cancer diagnosis and treatment of patients.

Acknowledgement

*FMTVDM is issued to first author. No other COIs to report.

References

3. An Introduction to Dense Breast Tissue. [Link](https://bit.ly/2Rv3FaH)

4. The Fleming Method for Tissue and Vascular Differentiation and Metabolism [Review Article]

CLINICAL GROUP

Clinical efforts to diagnostically evaluate women-and men-with breast cancer have resulted in various degrees of success. The use of external radiographic sources to look for tissue abnormalities—mammography—has according to the Cochrane Collaboration not been able to demonstrate a reduction in mortality [1]; a position also held by the National Cancer Institute and The Canadian Trial [2].

Given the failure of mammograms to reliably find and exclude breast cancer, a variety of investigations looking at ultrasound, Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), have failed to yield significantly better results.

In 2019, following efforts by DenseBreasts.org [3] and others, U.S. Federal Legislation was passed requiring all mammograms to include a statement specifying that women with dense breasts—which represents 50% of all women—need to be aware that mammograms may miss breast cancers in women whose breast tissue is considered dense.

During the last two–decades investigations into the ability to quantitatively measure changes in regional blood flow and metabolism—thus allowing differentiation of tissue—have demonstrated that FMTVDM* [4] can measure these tissue differences making it possible to distinguish between (A) inert material—calcium, breast implants, etc. – (b) normal breast tissue—including the fibroglandular tissue referred to as dense breast tissue, (C) inflammatory changes—including infections, (D) precancerous and ductal carcinoma in-situ, and (E) cancers [5–40].

As a result of these investigations, FMTVDM was patented [4] in 2017 and has been undergoing additional investigation in Nevada [41,42]. It is currently scheduled to be implemented in the curriculum of U.S. training programs [43] – thus opening the doorway between the worlds of qualitative and quantitative breast cancer diagnosis and treatment of patients.

Acknowledgement

*FMTVDM is issued to first author. No other COIs to report.

References

3. An Introduction to Dense Breast Tissue. [Link](https://bit.ly/2Rv3FaH)

4. The Fleming Method for Tissue and Vascular Differentiation and Metabolism [Review Article]

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

Highlights
- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
- Articles archived in worlds’ renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
- Journals indexed in (OMJE, SHERPA/RoMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated Editorial Board for every journal
- Accurate and rapid peer-review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavours.

Copyright: © 2020 Fleming RM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Fleming RM, Fleming MR, Dooley WC (2020) FMTVDM - Breast Cancers Diagnostic Doorway from Qualitative to Quantitative Measurement, Care and Treatment. Glob J Cancer Ther 6(1): 004-006. DOI: https://dx.doi.org/10.17352/2581-5407.000027