Introduction

A country’s development is directly proportional to the health status of its people. Health is an essential component in various indices which reflect the development, like human development index, quality of life, etc. There are several indicators of health, of which life expectancy and birth weight are dynamic and key indicators of health. These indicators indirectly reflect on the health infrastructure and health care delivery systems in the country. One of the indicators, namely low birth weight is of serious concern in benchmarking the public health infrastructure of a country. It has always been an important subject of nation’s concern and focus of national health policy.

A baby’s birth weight is a strong indicator of both maternal and child health and nutrition. A baby born with low birth weight is bound to face several health consequences from low levels of immunity, increased risk of infections, reduced muscle strength, impaired cognition and increased risk of several non-communicable diseases [1]. The consequences of low birth weight has been analyzed for several decades till now. According to Barker theory and Brenner’s hypothesis, fetal malnutrition is responsible for premature deaths and morbidity in adult life. Some of the key illnesses linked with low birth weight include arterial hypertension, ischemic cardiomyopathy, cerebrovascular accidents and a gamut of other non-communicable diseases like diabetes mellitus, chronic obstructive lung diseases and syndrome X [2].

Birth weight is the first weight of the newborn measured immediately after birth. A newborn is said to be of low birth weight when it weighs less than 2500 grams [3]. Globally, more than 20 million infants are born with low birth weight, constituting 15.5% of the total births of which 95.6% belong to the developing countries [4,5]. It has been estimated that half of all the perinatal deaths and one-thirds of all the infant deaths are a consequence of low birth weight [6]. In India, 20% of the newborns have low birth weight [7].

There are several established determinants of low birth weight, ranging from maternal smoking, poor diet, low body mass index, nutritional deficiencies like anemia, etc [8]. There are several studies which have linked socioeconomic
status with low birth weight. In developing countries, poverty, lack of literacy and poor socioeconomic status are the key determinants of low birth weight. However, in rare situations, low birth weight could be a consequence of genetic factors, including congenital malformations, especially in developed countries.

Considering the importance of birth weight in determining the development of a country, there is a growing need to evaluate the determinants of low birth weight. It is essential to prove the causality of the problem, in order to devise preventive strategies. A thorough knowledge on the predictors and determinants of low birth weight will help in not only creating awareness to impart knowledge to the antenatal women, but also to constitute mechanism of early detection of low birth weight and appropriate management techniques for the same.

Objective

* To estimate the prevalence of maternal and social risk factors of low birth weight.
* To evaluate the correlation between risk factors and low birth weight.
* To estimate the prevalence of low birth weight.

Methodology

Study setting and study participants

This study was carried out as a cohort study for a period of two years in our tertiary care hospital. All the antenatal women who visited to our hospital during the study period were included in the study. The participants were selected during their first trimester visit for antenatal care. The participants were selected by convenient sampling. A total of 185 antenatal women participated in this study.

Ethical approval and informed consent

Approval was obtained from the institutional ethics committee prior to the commencement of the study. Each participant was explained in detail about the study and informed consent was obtained prior to the data collection.

Data collection

A structured interview schedule was used to collect data regarding the demographics of the study participants. A detailed maternal and antenatal history was recorded followed by physical examination, including the measurement of height and weight of the mother. Hemoglobin levels were measured by cyanmethemoglobin method to evaluate the presence of anemia. The antenatal mothers were followed up till their delivery and the birth weight of the infant was recorded on a standardized weighing scale.

Operational definition

Low birth weight was defined the weight of the new born below 2500 grams [3]. A hemoglobin level of less than 11g/dl was labeled as anemia. It was further graded as mild (10–10.9g/dl); moderate (7–9.9g/dl); severe (4–7g/dl) and very severe (<4g/dl) [9].

Data analysis

Data was entered and analyzed using EPI2005 package. Percentages were computed to express the prevalence of risk factors and incidence of low birth weight. Mean birth weight and mean maternal weight were also tabulated.

Results

This study was carried out among 185 antenatal women visiting our tertiary care hospital. The mean age of the study participants was 21.02± 2.3 years. A majority of the participants (56.8%) belonged to class V socioeconomic status classified as per modified B.G. Prasad’s classification. About 57.3% of the participants were primi. The background characteristics of the study participants are given in table 1.

The prevalence of risk factors of low birth weight is given in table 2. In this study, about 90(48.6%) of the participants were...
found to be underweight. The mean Body Mass Index (BMI) of the study participants was 19.8kg/m². Moreover, estimation of hemoglobin levels showed that 83(44.9%) participants were moderately anaemic (7–10g/dl).

The incidence of low birth weight is given in table 3. It was observed that 47(25.4%) of the participants delivered low birth weight babies. About 31.6% of the participants underwent abortion, and 5(2.7%) of the participants delivered pre term babies.

The interrelationship between the predictive risk factors of low birth weight is given in table 4. This study observed a significant association between socioeconomic status and anemia among the study participants. There was a significant variation in the mean hemoglobin levels with increase in the socioeconomic status (p=0.0063)

The association between body mass index and birth weight is given in table 5. There was a significant difference observed in the birth weight of the infants between the BMI groups. Underweight mothers were more at risk of delivering low birth weight babies, compared to mothers with normal or overweight mothers (p <0.05).

Discussion

This study was conducted with an objective of establishing the predictors of low birth weight. The incidence of low birth weight in our study was 25.4%. Bharati et al in her study reported that 20% of Indians deliver low birth weight babies, which is similar to our finding [7]. The state wise prevalence of low birth weight showed that in Tamil Nadu the prevalence of low birth weight was 21.4% as per NFHS data of 2005-06.

Table 3: Incidence of low birth weight among the study participants.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Birth weight</th>
<th>Frequency (n)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low B.W. (<2.5 kg)</td>
<td>47</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>Normal (2.5 - 3.0 kg)</td>
<td>77</td>
<td>41.6</td>
</tr>
<tr>
<td>3</td>
<td>Above normal (> 3 kg)</td>
<td>53</td>
<td>28.6</td>
</tr>
<tr>
<td>4</td>
<td>Abortion</td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>Pre term</td>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>Mean B.W. (kgs) S.D. (kgs)</td>
<td>2.71</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Interrelationship with the risk factors of low birth weight.

<table>
<thead>
<tr>
<th>S.E. Status (B.G. Prasad Scale)</th>
<th>Anaemia</th>
<th>Hb%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>Very Severe</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>9.93</td>
</tr>
<tr>
<td>S.D.</td>
<td></td>
<td>1.67</td>
</tr>
<tr>
<td>‘p’</td>
<td>0.0063</td>
<td>(Significant)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Association between body mass index and low birth weight.

<table>
<thead>
<tr>
<th>BMI</th>
<th>LBW</th>
<th>Normal</th>
<th>Above Normal</th>
<th>Abortion</th>
<th>Preterm</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under weight (90)</td>
<td>31</td>
<td>34.4</td>
<td>32</td>
<td>35.6</td>
<td>21</td>
<td>23.3</td>
<td>3</td>
</tr>
<tr>
<td>Normal (89)</td>
<td>16</td>
<td>18.0</td>
<td>42</td>
<td>47.2</td>
<td>30</td>
<td>33.7</td>
<td>-</td>
</tr>
<tr>
<td>Over Weight (6)</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>50.0</td>
<td>2</td>
<td>33.3</td>
<td>-</td>
</tr>
</tbody>
</table>

There are several pathophysiological mechanisms underlying the relationship between maternal body mass index and low birth weight. There is the evident mechanism of lack of nutrients in underweight mothers, which in turn results in undernourishment of the infants as a result of which, low birth weight ensues. In developing countries like India, this link is accentuated by the presence of poor socioeconomic status, and widespread prevalence of anemia. Our study also emphasized the statistically significant relationship between socioeconomic status and anemia (p<0.001).

Apart from the evidences which substantiate the need for an increase in the maternal body weight, an in-depth analysis of the rate of increase in the weight gain in the infants, proportional to the unit increase in the body mass index, will effectively validate the association. Moreover, there are several confounders like maternal age, parity, maternal illnesses and other personal habits like smoking and alcohol use, which also have a significant role in determining the birth weight of the newborns.

DOI: http://dx.doi.org/10.17352/jgro.000053
Conclusion

Our study has substantiated the incidence of low birth weight among the catchment population of our tertiary care hospital. It also clearly elucidated the predictors of low birth weight in newborns, namely socioeconomic status, body mass index of mothers and anemia in pregnancy. There is a growing need at health infrastructure levels by targeting this problem at a significantly early stage. Despite several reproductive health initiatives of the public health care system, there should be a paradigm shift in targeting adolescent girls, rather than catching up the women during pregnancy. Mass efforts should be implemented in raising the level of awareness among adolescent girls, and also to tackle the problem of anemia and other nutritional deficiencies in the adolescent girls, in order to have a healthy and viable pregnancy and outcome.

Our study has provided scope for future research to be directed towards developing a mathematical model to predict the unit rise in the weight of the fetus in relation to the unit change in the maternal risk factors namely hemoglobin levels, body mass index and various other factors like parity and maternal age.

Limitation

This study has emphasized on the high incidence of low birth weight and also elaborated on the predictive risk factors in the mothers. However, the role of several confounders like parity, gestational age, smoking status and presence of other systemic illnesses were not analyzed.

References