Introduction

The number of surgeries performed with robotic equipment has increased ever since its release by the Food and Drug Administration (FDA) in 2005 [1].

Robotic surgery is well accepted and seems to be as effective as laparoscopy in the treatment of endometrial and cervix cancers [2,3]. Some of the advantages of using this method over the traditional laparoscopic technique include 3D visualization, tremor filtration, greater dexterity, better ergonomics, lower blood loss and lower post-operative pain index [4].

In spite of some known limitations, such as the limited view of the 4 surgical quadrants when using Da Vinci® series S and Si, robotic surgery is now widely used in the United States [5]. Furthermore, this limitation has been correct by the newest Da Vinci® series XI, increasing the effectiveness of the method. With these updates in technology, the American Society of Gynecologic Oncology (SGO) now recognizes robotic surgery as a changer in gynecologic cancer treatment paradigms [6].

To the present moment, 3200 robotic platform exist in the world (2223 in the USA, 549 in Europe and 494 in the rest of the world). Also, in the United States 95% of the gynecologic oncologists have these platforms in their institutions and have been trained to use them [7].
22 procedures had peri-operative complications, 15 were urologic and occurred at the time of bladder detachment, and at the dissection of the ureter and the ureter tunnel during radical hysterectomy. When performing the dissection with bipolar Maryland forceps without triggering the monopolar energy of the scissors in 35W, lesions not noticed in the peri-operative period ceased and no more fistulas occurred.

Furthermore, the use of a 10-fold increase in 3D vision allowed the performance of nerve sparing surgeries (without impairing the bladder branch of the lower hypogastric plexus) and, therefore, avoided complications such as neurogenic bladder and other bladder dysfunctions.

The mean blood loss, length of hospital stay and surgical time were 31.17mL; 1.46 days and 229.66 minutes respectively.

Regarding the types of cancer, most of the surgeries were due to cervical cancer (n=69; 51.11%) followed by endometrial cancer (n=61, 45.18%) and ovarian cancer (n=5, 3.7%). The mean age was 48 years and the BMI 28.84.

The results of the 135 studied cases are shown in table 1. A comparison between this data and other similar studies is displayed in table 2.

Discussion

Robotic surgery and cervix cancer

Radical hysterectomy is the main surgical option for the treatment of early stage carcinoma of the uterine cervix. Because of its complexity, few surgeons perform this surgery by using laparoscopy. Thus, the employment of the robotic technique can result in positive outcomes, as it’s safer, less complex and easier to learn than the traditional laparoscopy.

Besides that, it’s known that radical hysterectomies performed by the robotic via carry less risk of postoperative complications, bleeding, and infection, and have faster recovery times.

Average long-term survival is similar between the laparoscopic and the robotic techniques, reaching 95% in 24 months and 97% in 48 months. The number of dissected lymph nodes is generally bigger in the robotic radical hysterectomy.

Robotic surgery and endometrial cancer

In gynecologic oncology, robotic surgery is mainly used in the treatment of endometrial cancer. Systematic comparative data between the use of the robotic and the traditional laparoscopic methods is still not available, as the majority of the comparative studies are retrospective.

The benefits of the usage of the robotic over the laparoscopic technique are evident in a major publication by Paley [14]. In this study, 377 patients submitted to robotic hysterectomy had fewer complications and shorter recovery times when compared to 131 patients who underwent laparoscopic hysterectomies.

Robotic surgery and ovarian cancer

The role of the robotic surgery for the treatment of ovarian cancer is still not clear, as there are no comparative papers currently available. With the introduction of the new Da Vinci® XI, new possibilities should be opened in this field, as this machine can now visualize all the 4 operative quadrants.

A retrospective revision work by Feuer et al., [15], comprising of 63 cases demonstrated that, in comparison to the laparoscopic method, the robotic via has: less blood loss, faster postoperative recovery, but longer surgery durations. Complication rates, mean survival time and recurrence risks were not different between the methods.

Conclusions

The occurrence of complications in robotic surgeries is related to factors such as the procedure’s learning curve, the surgeon’s previous laparoscopic experiences, and the mastery of the robotic technique. The appropriate training of the Robotic Team is essential to decrease surgical time and complication rates.

Complications lead to more hospital visits, readmissions, and delays in hospital discharge. Many of the complications of...
endometrial cancer operation are due to the clinical condition of the patients, since many of them are obese, hypertensive, or have other comorbidities [18–20].

Robotic tweezers should always be on the surgeon’s sight and the electric activation of the bipolar should always be controlled. If one holds noble structures such as nerves or vessels with an activated bipolar, irreversible damage may occur. Furthermore, the traction on the structures need to be controlled with experience and vision, because the surgeon doesn’t have the tactile feedback [21,22].

The limitation of our study was the lack of comparison with conventional laparoscopy and laparotomies. Thus, a definitive conclusion based on our data is difficult and new prospective studies will be crucial to clarify and demonstrate implications in clinical practice. In spite of this limitation, our data is important due to the number of cases and to the perception that, with practice and time, we can perform complex minimally invasive procedures with great dexterity and safety by the robotic route.

Prospective controlled and randomized studies should evaluate parameters such as postoperative morbidity, the long-term progression of the diseases, and the precise improvement in quality of life [23–26].

Assisted robotic surgery has revolutionized the standard procedures of gynecological surgery, especially in oncological interventions, by reducing postoperative morbidity rates and preserving the basic principles of oncologic surgery.

Finally, technological advances and the development of new therapeutic alternatives indicate that the future of gynecological cancer treatment is promising. Hence the importance of analyzing per and postoperative data of patients submitted to these new techniques.

References

Table 2: Complications of Robotic Surgeries: Literature X Present Study.

<table>
<thead>
<tr>
<th>Author</th>
<th>n⁰</th>
<th>Type of Surgery</th>
<th>Average surgical time (Min)</th>
<th>Mean blood loss (ml)</th>
<th>Average length of hospital stay (Days)</th>
<th>Complications (n%)</th>
<th>Conversion to laparotomy (n%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boggess et al. [18]</td>
<td>103</td>
<td>Endometrial staging</td>
<td>191.20</td>
<td>74.50</td>
<td>1.00</td>
<td>7 (6.8%)</td>
<td>3 (2.8%)</td>
</tr>
<tr>
<td>Halloway et al. [19]</td>
<td>100</td>
<td>Endometrial staging</td>
<td>171.00</td>
<td>103.00</td>
<td>1.12</td>
<td>20 (30.8%)</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>Gehrig et al. [20]</td>
<td>49</td>
<td>Endometrial staging</td>
<td>189.00</td>
<td>50.00</td>
<td>1.00</td>
<td>6 (12.2%)</td>
<td>0</td>
</tr>
<tr>
<td>Veljovich et al. [21]</td>
<td>118</td>
<td>Endometrial staging</td>
<td>283.00</td>
<td>66.60</td>
<td>1.70</td>
<td>21 (17.8%)</td>
<td>0</td>
</tr>
<tr>
<td>Person et al. [22]</td>
<td>80</td>
<td>Robotic radical hysterectomy in cervical cancer</td>
<td>262.00</td>
<td>150.00</td>
<td>3.00</td>
<td>33 (41%)</td>
<td>0</td>
</tr>
<tr>
<td>Elsahwi et al. [23]</td>
<td>155</td>
<td>Endometrial staging</td>
<td>127.00</td>
<td>119.00</td>
<td>1.50</td>
<td>40 (25.8%)</td>
<td>0</td>
</tr>
<tr>
<td>Coronado et al. [24]</td>
<td>71</td>
<td>Endometrial staging</td>
<td>189.00</td>
<td>99.40</td>
<td>3.50</td>
<td>15 (21.1%)</td>
<td>3 (2.4%)</td>
</tr>
<tr>
<td>Seror et al. [25]</td>
<td>40</td>
<td>Endometrial staging</td>
<td>248.00</td>
<td>N/D</td>
<td>6.90</td>
<td>10 (25%)</td>
<td>N/D</td>
</tr>
<tr>
<td>Ga Won Yim et al. [26]</td>
<td>242</td>
<td>Endometrial staging and robotic radical hysterectomy in cervical cancer</td>
<td>268.00</td>
<td>168.00</td>
<td>9.80</td>
<td>39 (16.1%)</td>
<td>0</td>
</tr>
<tr>
<td>Present Study</td>
<td>135</td>
<td>Staging of endometrial, ovary and robotic radical hysterectomy in cervical cancer</td>
<td>229.66</td>
<td>31.17</td>
<td>1.46</td>
<td>22 (16.29%)</td>
<td>1 (0.74%)</td>
</tr>
</tbody>
</table>

Discover a bigger Impact and Visibility of your article publication with Peertechz Publications

Highlights

- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
- Articles archived in worlds’ renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
- Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated Editorial Board for every journal
- Accurate and rapid peer-review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavours.

Copyright: © 2019 Ferreira ÉL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.