Case Profile

A 69 year-old male, presented with hemodynamically significant ventricular tachycardia. His past history was significant for Ischemic heart disease, anterior wall myocardial infarction and PCI to LAD one year back. Electrocardiogram revealed evolved anterior wall myocardial infarction. Routine blood investigations were normal. Echocardiogram and cardiac MRI showed a true left ventricular apical aneurysm with severe left ventricular systolic dysfunction (Figure 1 A–D, Video-1). He successfully underwent Dor procedure prompt recovery on follow up (Figure 2 E–H, Video-2).

Discussion

Heart failure is a major health problem with increasing prevalence due to an aging population and more patients surviving acute myocardial infarction. Patients with moderate or severe heart failure have a poor prognosis, and despite major advances, long-term medical management alone may be insufficient. Cardiac transplantation and ventricular assist devices are definite or temporary surgical therapies [1]. Post infarction left ventricular remodelling is characterized by LV dilatation and abnormal geometry leading to systolic and diastolic dysfunction.

Development of a left ventricular aneurysm is a long-term complication of acute myocardial infarction, often leading to heart failure, ventricular tachycardia and thromboembolic events [2]. Surgical ventricular restoration (SVR) as described by Dor and colleagues [3]. Was introduced to improve geometric reconstruction with respect to standard linear repair in Left ventricle aneurysm. Subsequently, Dor and colleagues [4]. Described that the technique was applicable not only to the classic aneurysm but also to large akinetic ventricles [5]. Dor and

Figure 1: A and B: 2D Echo showing large LV aneurysm with organized clot C and D: Cardiac MRI in coronal and coaxial views showing large LV aneurysm with clot.

associates have reported excellent clinical and hemodynamic results of this procedure in several number of patients [6]. The Dor procedure excludes akinetic or dyskinetic portions of the anterior wall and septum, reshapes the Left ventricular with a stitch that encircles the transitional zone between contractile myocardium and aneurysmal tissue, and uses a patch to re-establish ventricular wall continuity [7]. By this technique, the operation improves size and geometry of the Left ventricle, reduces wall tension and paradox movement and enhances overall systolic function. In addition, the procedure may treat the ventricular arrhythmia complication and also allows for removal of intracavitary thrombi. Myocardial revascularization is almost always performed, Left ventricular reconstruction by the Dor procedure has subsequently been applied to patients with large akinetic ventricles [8].

Several surgical and device-based therapies have emerged in an attempt to reverse LV remodeling by restoring normal LV architecture and reducing LV volumes and wall stress. The parachute device (Cardiokinetix, Inc, Menlo Park,) emerged as a percutaneous device with the purpose of excluding the dysfunctional area of the LV, leading to a geometric reconfiguration and corresponding reductions in LV volumes.

Conclusion

The Dor procedure is a reproducible surgical option for treatment of ischemic dilated cardiomyopathy or post-infarction left ventricular aneurysm. Left ventricular reconstruction by the Dor procedure has been applied to patients with large akinetic ventricles. We report a 69 year-old male, presented with hemodynamically significant ventricular tachycardia he successfully underwent Dor procedure prompt recovery on follow up.

References

Copyright: © 2017 Vijay Kumar JR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.