Escherichia coli Viability in Coastal Marine Environments: A Case Study

Published On: December 31, 2015 | Pages: 020 - 027

Author(s): Caruso G* and Caruso R

Background: The assessment of the bacteriological quality of coastal marine waters through the search of Escherichia coli as an indicator of fecal pollution is a topic of public concern. The context and purpose of the study: During a coastal monitoring program, the abundance and distribution of the actively respiring and dead fraction within the total E. coli population ...

Effect of Immobilized Proteases on Bacterial Growth and Cell Adhesion on Polypropylene Surfaces

Published On: September 28, 2015 | Pages: 007 - 009

Author(s): Piotr Biniaż, Eugenio Spadoni Andreani, Anna Krasowska, Marcin ukasiewicz and Francesco Secundo*

The bacterial planktonic growth and the removal of bacterial cells grown on polypropylene surface coated with covalently immobilized proteases (subtilisin Carlsberg or -chymotrypsin) was investigated for Enterococcus hirae, Staphylococcus epidermidis and Escherichia coli. Immobilization of both proteases on plasma-treated polypropylene was carried out using as cross-li ...

Multipleloci Variable-number Tandem Repeat Typing of Clinical Mycobacterium tuberculosis Isolates from Zunyi, Guizhou Province of China
Introduction: Due to the emergence of multidrug/extensively drug-resistant TB and the lack of new anti-TB drugs, tracing the infectious source and monitoring the transmission of drug-resistant TB strains have become critically important.

Entamoeba histolytica - Pathogenic Protozoan of the Large Intestine in Humans

Entamoeba histolytica is a cosmopolitan, parasitic protozoan of human large intestine, which is a causative agent of amoebiasis. Amoebiasis manifests with persistent diarrhea containing mucus or blood, accompanied by abdominal pain, flatulence, nausea and fever. In some cases amoebas may travel through the bloodstream from the intestine to the liver or to other organs.

Cord formation in Mycobacterium abscessus

The microscopic cord formation is a characteristic property of the species of Mycobacterium tuberculosis complex (MTC). This feature is used as screening method of MTC and detection of drug resistant tuberculosis in law resource settings. The presence of true cording in M.abscessus poses a challenge for identification of MTC based on the cord formation.