No Association of the Complexin-3 Gene Polymorphism with Schizophrenia

Published On: December 30, 2015 | Pages: 027 - 029

Author(s): Sofi Atshemyan, Roksana Zakharyan*, Arsen Arakelyan

Background: Schizophrenia (SCZ) is a multifactorial mental disease. Whereas complex interplay of genes and environment contributes to the SCZ, the disorder has still unclear biological background. Growing amount of evidence showed that synaptic dysfunctions are contributed to SCZ etiopathogenesis. ...

Role of Inhalant and Food Allergens in Child Sensitization: A Prospective Study in 176 Children

Published On: November 23, 2015 | Pages: 021 - 026

Author(s): Arnaldo Cantani*

Background: The origin of atopic disease is poly factorial and the development of atopic manifestations appears to be linked to interactions between genetic and environmental factors. Such data seem to focus attention on the rising prevalence rates of atopic dermatitis, a common debilitating skin condition in infants and young children. They also often have ...

In LNCaP Cells Inhibition of BCL-2 by Antisense Oligonucleonucleotides Results in Compensatory Changes in Apoptosis
Antisense oligonucleotides (oligos) have been evaluated for treating prostate cancer in both in vivo and in vitro models. Although most oligos contain a single mRNA binding site, our laboratory evaluates bi-specific oligos directed towards two proteins. This study evaluates the growth inhibition in vitro of the LNCaP cell line employing mono- and bi-specific oligos di ...

A Great Discovery Allergy and Asthma are fully Genetic in Children

Background: Allergic asthma and rhinitis, atopic dermatitis, urticaria and food allergy are genetic diseases of infants and children. Several investigators have provided evidence for a genetic localization for atopy. Babies of atopic parents are at high risk of developing atopic diseases, however the phenotypic expression of such diseas ...
Transposable Elements in Fungi: A Genomic Approach

Published On: May 07, 2015 | Pages: 012 - 016

Author(s): Mateus F. Santana* and Marisa V. Queiroz*

Transposable elements (TEs) include a wide range of DNA sequences that can change positions in the genome. The accessibility of whole fungal genome sequences and analysis of TEs demonstrate the important role they play in genome evolution of fungi species. TE activity is a primary mechanism for high fitness, plasticity and adaptability in certain species of pathogenic ...